精英家教网 > 高中数学 > 题目详情
5.已知等差数列{an}中,a2=3,a5=9.
(Ⅰ)求数列{an}的通项an和前n项和Sn
(Ⅱ)证明:命题“?n∈N+,$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}<\frac{1}{2}$”是真命题.

分析 (Ⅰ)设等差数列{an}的公差为d,运用等差数列的通项公式,解方程可得首项和公差,即可得到所求通项和求和;
(Ⅱ)求得$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),运用裂项相消求和,结合不等式的性质,即可得证.

解答 解:(Ⅰ)设等差数列{an}的公差为d,
由a2=3,a5=9,可得a1+d=3,a1+4d=9,
解得a1=1,d=2,
则an=a1+(n-1)d=2n-1;
前n项和Sn=$\frac{1}{2}$n(1+2n-1)=n2
(Ⅱ)证明:$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
即有$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{2}$(1--$\frac{1}{2n+1}$)<$\frac{1}{2}$,
则命题“?n∈N+,$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}<\frac{1}{2}$”是真命题.

点评 本题考查等差数列的通项公式和求和公式的运用,考查数列的求和方法:裂项相消求和,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(-1,m),$\overrightarrow{c}$=(-1,2),若($\overrightarrow{a}$+$\overrightarrow{b}$)∥$\overrightarrow{c}$,则m=(  )
A.-1B.1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若三点A(2,2),B(0,m),C(n,0)在同一条直线上,且mn≠0,则$\frac{1}{m}+\frac{1}{n}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数是奇函数,且最小正周期是π的函数是(  )
A.y=cos|2x|B.y=|sinx|C.y=sin($\frac{π}{2}$+2x)D.y=cos($\frac{3π}{2}$-2x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列式子中成立的是(  )
A.log23.4>log28.5B.log0.31.8<log0.32.7
C.3.50.3>3.40D.${0.6^{\frac{6}{11}}}>{0.7^{\frac{6}{11}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知A={x|a-4<x<2a},B={x|x<-1或x>5}.
(Ⅰ)若A∪B=R,求a的取值范围;
(Ⅱ)若A⊆B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列大小关系正确的是(  )
A.log40.3<0.43<30.4B.0.43<30.4<log40.3
C.0.43<log40.3<0.30.4D.log40.3<0.30.4<0.43

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.方程$\frac{{1+{2^x}}}{{1+{2^{-x}}}}=\frac{1}{4}$的解为x=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{an}的前n项和Sn满足1g(Sn+1)=n+1,则通项an=${a}_{n}=\left\{\begin{array}{l}{99,n=1}\\{9×1{0}^{n},n≥2,n∈{N}^{*}}\end{array}\right.$.

查看答案和解析>>

同步练习册答案