精英家教网 > 高中数学 > 题目详情
4.若函数f(x)=x2-2kx+5在[2,4]上具有单调性,则实数k的取值范围是(  )
A.[4,+∞)B.(-∞,-2]C.[2,+∞)D.(-∞,2]∪[4,+∞)

分析 由函数f(x)=x2-2kx+5=(x-k)2+5-k2在[2,4]上具有单调性,可得k≤2或4≤k.即可得出.

解答 解:∵函数f(x)=x2-2kx+5=(x-k)2+5-k2在[2,4]上具有单调性,
∴k≤2或4≤k.
则实数k的取值范围是k≤2或4≤k.
故选:D.

点评 本题考查了二次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知过抛物线y2=2px(p>0)的焦点F作一条直线交抛物线于A、B两点,以线段AB为直径的圆与直线x=-1相切,求该抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.等差数列{an}的前n项和为Sn,已知a1=10,a2为整数,且Sn≤S4.则通项公式an=13-3n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)已知函数$f(x)=\left\{\begin{array}{l}\frac{3}{2}\;x+3\;\;(-2≤x<0)\\-\frac{1}{2}x+3\;\;\;\;(0≤x<2)\\ 2\;\;\;\;(2≤x<4)\end{array}\right.$
①画出函数的图象;
②利用函数的图象写出函数的值域
(2)已知函数$y=\sqrt{ax+1}(a<0,且$且a为常数)在区间(-∞,1]上有意义,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{{a{x^2}}}{b+cx}$(a,b,c为常数),a,b分别是双曲线x2-$\frac{y^2}{3}$=1的实半轴长、半焦距,且直线x-cy=2和直线y=x-3垂直.
(1)求函数f(x)的解析式;
(2)设k>1,解关于x的不等式f(x)<$\frac{{({k+1})x-k}}{2-x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=3sin(2x-$\frac{π}{3}$)的图象为C,给出下列结论:
①图象C关于直线x=$\frac{11}{12}$π对称;
②图象C关于点(${\frac{2}{3}$π,0)对称;
③函数f(x)在区间(-$\frac{π}{12}$,$\frac{π}{3}}$)内是增函数;
其中正确的结论有(  )个.
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数$f(x)={(\frac{1}{4})^x}+a•{(\frac{1}{2})^x}-1$,g(x)=$\frac{1-m•{2}^{x}}{1+m•{2}^{x}}$.
(Ⅰ)当a=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(Ⅱ)当m=1时,判断函数g(x)的奇偶性并证明,并判断g(x)是否有上界,并说明理由;
(Ⅱ)若函数f(x)在[0,+∞)上是以2为上界的有界函数,求实数a的取值范围;
( IV)若m>0,函数g(x)在[0,1]上的上界是G,求G的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若关于x的方程lg3x×lg4x-a2=0有两个不相等的实数根,则方程的两根之积为$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设命题p:实数x满足x2-4ax+3a2<0,其中a<0;命题q:实数x满足x2-2x-3>0,且¬p的¬q必要不充分条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案