精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的短轴长为2,且函数的图象与椭圆仅有两个公共点,过原点的直线与椭圆交于两点.

(1)求椭圆的标准方程;

(2)点为线段的中垂线与椭圆的一个公共点,求面积的最小值,并求此时直线的方程.

【答案】(1);(2)的面积的最小值为,此时直线的方程为.

【解析】试题分析】(1)依据题设条件建立方程求解;(2)先建立直线的方程,再与椭圆方程联立,运用坐标建立关于三角形面积公式的目标函数求解:

(1)由题意可知, ,则

联立,得:

根据椭圆与抛物线的对称性,可得

,又

,∴椭圆的标准方程为.

(2)①当直线的斜率不存在时, ;当直线的斜率为0时,

②当直线的斜率存在且不为0时,设直线的方程为,由,得

由题意可知线段的中垂线方程为,由,得

,当且仅当,即时等号成立,此时的面积取得最小值

,∴的面积的最小值为,此时直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在长方体是棱上的一点

1求证:平面

2求证:

3是棱的中点在棱上是否存在点使得平面若存在求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:极坐标与参数方程

在平面直角坐标系中,曲线的参数方程为为参数).

1)求曲线的普通方程;

2)经过点(平面直角坐标系中点)作直线交曲线两点,若恰好为线段的三等分点,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个关于数列命题:

(1)若是等差数列,则三点共线;

(2)若是等比数列,则 ()也是等比数列;

3等比数列的前n项和为,若对任意的,点均在函数 ( 均为常数)的图象上,则r的值为.

4对于数列,定义数列为数列的“差数列”,若 的“差数列”的通项为,则数列的前项和

其中正确命题的个数是 ( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中国好声音()》是由浙江卫视联合星空传媒旗下灿星制作强力打造的大型励志专业音乐评论节目,于2012713日在浙江卫视播出.每期节目有四位导师参加.导师背对歌手,当每位参赛选手演唱完之前有导师为其转身,则该选手可以选择加入为其转身的导师的团队中接受指导训练.已知某期《中国好声音》中,6位选手唱完后,四位导师为其转身的情况如下表所示:

导师转身人数(人)

4

3

2

1

获得相应导师转身的选手人数(人)

1

2

2

1

现从这6位选手中随机抽取两人考查他们演唱完后导师的转身情况.

1)请列出所有的基本事件;

2)求两人中恰好其中一位为其转身的导师不少于3人,而另一人为其转身的导师不多于2人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)写出所有与终边相同的角;

(2)写出在内与终边相同的角;

(3)若角终边相同,则是第几象限的角?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数

1求证:曲线在点处的切线过定点;

2在区间上的极大值,但不是最大值,求实数的取值范围;

3求证:对任意给定的正数 ,总存在,使得上为单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 平面 的中点.

(Ⅰ)证明: 平面

(Ⅱ)求多面体的体积;

(Ⅲ)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】漳州市博物馆为了保护一件珍贵文物,需要在馆内一种透明又密封的长方体玻璃保护罩内充入保护液体.该博物馆需要支付的总费用由两部分组成:①罩内该种液体的体积比保护罩的容积少0.5立方米,且每立方米液体费用500元;②需支付一定的保险费用,且支付的保险费用与保护罩容积成反比,当容积为2立方米时,支付的保险费用为4000元.

(Ⅰ)求该博物馆支付总费用与保护罩容积之间的函数关系式;

(Ⅱ)求该博物馆支付总费用的最小值.

查看答案和解析>>

同步练习册答案