精英家教网 > 高中数学 > 题目详情

【题目】某农场种植黄瓜,根据多年的市场行情得知,从春节起的300天内,黄瓜市场售价与上市时间的关系用图1所示的一条折线表示,黄瓜的种植成本与上市时间的关系用图2所示的抛物线表示.(注:市场售价和种植成本的单位:元/kg,时间单位:天)
(1)写出图1表示的市场售价与时间的函数关系式P=f(t);写出图2表示的种植成本与时间的函数关系式Q=g(x);

(2)认定市场售价减去种植成本为纯收益,问从春节开始的第几天上市的黄瓜纯收益最大?并求出最大值.

【答案】
(1)解:由图1可得市场售价与时间的函数关系为f(t)=

由图2可得种植成本与时间的函数关系式为g(t)= (t﹣150)2+100,0≤t≤300


(2)解:设t时刻的纯收益为h(t),则h(t)=f(t)﹣g(t),

即h(t)=

当0≤t≤200时,配方整理得h(t)=﹣ (t﹣50)2+100,

所以,当t=50时,h(t)取得区间[0,200]上的最大值100;

当200<t≤300时,配方整理得h(t)=﹣ (t﹣350)2+100,

所以,当t=300时,h(t)取得区间(200,300]上的最大值87.5;

综上所述,纯收益最大值为100元,此时t=50,即从二月一日开始的第50天时,上市的西红柿收益最答.


【解析】1、本题考查的是一次函数的图像问题,由待定系数法求出分段函数的两个解析式。
2、由题意可得设t时刻的纯收益为h(t),则h(t)=f(t)﹣g(t)得到函数的解析式,当0≤t≤200时,配方整理得h(t)=﹣ 1 200 (t﹣50)2+100,所以,当t=50时,h(t)取得区间[0,200]上的最大值100;当200<t≤300时,配方整理得h(t)=﹣ (t﹣350)2+100,
所以,当t=300时,h(t)取得区间(200,300]上的最大值87.5
综上所述,纯收益最大值为100元,此时t=50,即从二月一日开始的第50天时,上市的西红柿收益最答
【考点精析】本题主要考查了函数的图象的相关知识点,需要掌握函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,对任意的a,b∈R都有f(a+b)=f(a)f(b)且对任意的x∈R,恒有f(x)>0;
(1)求f(0);
(2)证明:函数y=f(x)在R上是增函数;
(3)若f(x)f(2x﹣x2)>1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x(|x|+4),且f(a2)+f(a)<0,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面上的动点P(x,y)及两定点A(﹣2,0),B(2,0),直线PA,PB的斜率分别是 k1 , k2
(1)求动点P的轨迹C的方程;
(2)设直线l:y=kx+m与曲线C交于不同的两点M,N. ①若OM⊥ON(O为坐标原点),证明点O到直线l的距离为定值,并求出这个定值
②若直线BM,BN的斜率都存在并满足 ,证明直线l过定点,并求出这个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在长方体ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.
(1)求证:直线BD1∥平面PAC
(2)求证:平面PAC⊥平面BDD1B1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知圆C1的参数方程为 (φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C2的极坐标方程为ρ=2 cos(θ﹣ ). (Ⅰ)将圆C1的参数方程他为普通方程,将圆C2的极坐标方程化为直角坐标方程;
(Ⅱ)圆C1 , C2是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,当x∈[0,+∞)时,f(x)=2x+x﹣m(m为常数).
(1)求常数m的值.
(2)求f(x)的解析式.
(3)若对于任意x∈[﹣3,﹣2],都有f(k4x)+f(1﹣2x+1)>0成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣
(1)利用定义证明:函数f(x)在区间(0,+∞)上为增函数;
(2)当x∈(0,1)时,tf(2x)≥2x﹣1恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC
(1)证明:A1C⊥平面BED;
(2)求二面角A1﹣DE﹣B的余弦值.

查看答案和解析>>

同步练习册答案