【题目】已知抛物线,直线与抛物线交于两点.
(Ⅰ)若,求以为直径的圆被轴所截得的弦长;
(Ⅱ)分别过点作抛物线的切线,两条切线交于点,求面积的最小值.
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy上取两个定点A1(,0),A2(,0),再取两个动点N1(0,m),N2(0,n),且mn=2.
(1)求直线A1N1与A2N2交点M的轨迹C的方程;
(2)过R(3,0)的直线与轨迹C交于P,Q,过P作PN⊥x轴且与轨迹C交于另一点N,F为轨迹C的右焦点,若(λ>1),求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对称轴为坐标轴的椭圆的焦点为,,在上.
(1)求椭圆的方程;
(2)设不过原点的直线与椭圆交于,两点,且直线,,的斜率依次成等比数列,则当的面积为时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线C:()的焦点为F,经过点F的动直线l交抛物线C于,两点,且.
(1)求抛物线C的方程;
(2)若(O为坐标原点),且点E在抛物线C上,求直线l的倾斜角;
(3)若点M是抛物线C的准线上的一点,直线,,斜率分别为,,,求证:当为定值时,也为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“勾股定理”在西方被称为“毕达哥拉斯定理”.三国时期,吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷100枚飞镖,则估计飞镖落在区域1的枚数最有可能是( )
A.30B.40C.50D.60
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明,下面是赵爽的弦图及注文,弦图是一个以勾股之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用2×勾×股+(股-勾)2=4×朱实+黄实=弦实,化简得勾2+股2=弦2,设勾股形中勾股比为,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )
A.134B.866C.300D.188
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com