【题目】某工厂生产某种型号的电视机零配件,为了预测今年月份该型号电视机零配件的市场需求量,以合理安排生产,工厂对本年度月份至月份该型号电视机零配件的销售量及销售单价进行了调查,销售单价(单位:元)和销售量(单位:千件)之间的组数据如下表所示:
月份 | ||||||
销售单价(元) | ||||||
销售量(千件) |
(1)根据1至月份的数据,求关于的线性回归方程(系数精确到);
(2)结合(1)中的线性回归方程,假设该型号电视机零配件的生产成本为每件元,那么工厂如何制定月份的销售单价,才能使该月利润达到最大(计算结果精确到)?
参考公式:回归直线方程,其中.
参考数据:.
科目:高中数学 来源: 题型:
【题目】等差数列的定义可用数学符号语言描述为________,其中,其通项公式_________,__________=_________,等差数列中,若则________()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义域为的函数满足:对于任意的实数都有成立,且当时, 恒成立,且是一个给定的正整数).
(1)判断函数的奇偶性,并证明你的结论;
(2)判断并证明的单调性;若函数在上总有成立,试确定应满足的条件;
(3)当时,解关于的不等式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】假设有5个条件类似的女孩(把她们分别记为A,B,C,D, E)应聘秘书工作,但只有2个秘书职位,因此5个人中只有2人能被录用.如果5个人被录用的机会相等,分别计算下列事件的概率;
(1)女孩A得到一个职位;
(2)女孩A和B各得到一个职位;
(3)女孩A或B得到一个职位.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,点P,G分别是,的中点,已知⊥平面ABC,==3,==2.
(I)求异面直线与AB所成角的余弦值;
(II)求证:⊥平面;
(III)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆C:的左、右焦点分别为、,上顶点为A,在x轴负半轴上有一点B,满足为线段的中点,且AB⊥。
(I)求椭圆C的离心率;
(II)若过A、B、三点的圆与直线:相切,求椭圆C的方程;
(III)在(I)的条件下,过右焦点作斜率为k的直线与椭圆C交于M,N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形?如果存在,求出m的取值范围;如果不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果l是空间中的一条直线,是空间中的一个平面,判断下列命题的真假.
(1)l与要么相交,要么不相交;
(2)要么l在内,要么l在外;
(3)要么l与平行,要么l在内.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com