精英家教网 > 高中数学 > 题目详情
如图,正方体中,已知为棱上的动点.

(1)求证:
(2)当为棱的中点时,求直线与平面所成角的正弦值.
(1)详见解析;(2)直线与平面所成角的正弦是.

试题分析:(1)空间中证线线垂直,一般先证线面垂直.那么在本题中证哪条线垂直哪个面?从图形可看出,可证. (2)思路一、为了求直线与平面所成角的正弦值,首先作出直线在平面内的射影. 连,连,可证得,这样便是直线与平面所成角.思路二、由于两两垂直,故可分别以轴正向,建立空间直角坐标系,然后利用空间向量求解.
试题解析:连,连.
(1)由,知,
, 故.
再由便得.

(2)在正中,,而,
,平面,且,
⊥面,于是,为二面角的平面角.
正方体ABCD—中,设棱长为,且为棱的中点,由平面几何知识易得,满足,故.
再由,故是直线与平面所成角.
,故直线与平面所成角的正弦是.
解二.分别以轴正向,建立空间直角坐标系.设正方体棱长为.
(1)易得.
,则, ,从而
,于是
(2)由题设,,则,.
是平面的一个法向量,则,即

于是可取,.易得,故若记的夹角为,则有,故直线与平面所成角的正弦是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

四棱锥底面是菱形,,分别是的中点.

(1)求证:平面⊥平面
(2)上的动点,与平面所成的最大角为,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱中,平面.以
为邻边作平行四边形,连接

(1)求证:∥平面 ;
(2)求直线与平面所成角的正弦值;
(3)线段上是否存在点,使平面与平面垂直?若存在,求出的长;若
不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在底面为平行四边形的四棱锥中,
平面,且,点的中点.

(1)求证:
(2)求证:平面
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直三棱柱ABC-A1B1C1中,已知AB=5,AC=4,BC=3,AA1=4,点D在棱AB上.

(1)求证:AC⊥B1C;
(2)若D是AB中点,求证:AC1∥平面B1CD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,上一点,面,四边形为矩形 ,,
(1)已知,且∥面,求的值;
(2)求证:,并求点到面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是(    )
A.若α⊥β,m?α,n?β,则m⊥n
B.若α∥β,m?α,n?β,则m∥n
C.若m⊥n,m?α,n?β,则α⊥β
D.若m⊥α,m∥n,n∥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线, 是两个不同的平面,则下列命题正确的是(    )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设l是一条直线,α,β,γ是不同的平面,则在下列命题中,假命题是________.
①如果α⊥β,那么α内一定存在直线平行于β
②如果α不垂直于β,那么α内一定不存在直线垂直于β
③如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ
④如果α⊥β,l与α,β都相交,那么l与α,β所成的角互余

查看答案和解析>>

同步练习册答案