精英家教网 > 高中数学 > 题目详情

【题目】已知,其中均为实数.

I的极值;

II,求证:对恒成立.

III,若对给定的,在区间上总存在使得成立,求的取值范围.

【答案】I极大值,无极小值;II证明见解析;III.

【解析】

试题分析:I求出函数的导数,利用导函数的符号判断函数的单调性,然后求解极值;II通过,化简,利用函数的单调性,转化原不等式转化,构造函数,利用新函数的导数的单调性,证不等式成立;III1的最大值,求出函数的导数,判断,不满足题意;当时,要使得的极值点必在区间内,求出的范围,当,利用上的值域包含于上的值域,推出关系式,通过构造函数,通过导数求解函数的最值,然后推出.

试题解析:I极大值,无极小值;

II

,在上是增函数.

,在上是增函数.

,则原不等式转化为

.

即证,即

恒成立,

,即所证不等式成立.

IIII

所以.

,当时,,不符合题意.

时,要使得

那么由题意知的极值点必在区间内,即.

,且函数

由题意得上的值域包含于上的值域.

内,.

下面证时,,取,先证,即证.

,在内恒成立.

.

再证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆,直线过点

(1)求圆的圆心坐标和半径;

(2)若直线与圆相切,求直线的方程;

(3)若直线与圆相交于PQ两点,求三角形CPQ的面积的最大值,并求此时

直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为椭圆左、右焦点,点在椭圆上,且轴,的周长为6.

(1)求椭圆的标准方程;

(2)是椭圆上异于点的两个动点,如果直线与直线的倾斜角互补,证明:直线的斜率为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个铝合金窗分为上、下两栏,四周框架和中间隔档的材料为铝合金,宽均为6,上栏与下栏的框内高度(不含铝合金部分)的比为1:2,此铝合金窗占用的墙面面积为28800,设该铝合金窗的宽和高分别为,铝合金窗的透光部分的面积为.

(1)试用表示

(2)若要使最大,则铝合金窗的宽和高分别为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥底面底面是直角梯形的中点

(1)求证:平面平面

(2)若二面角的余弦值为求直线与平面所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)的图象与直线)相切,并且切点横坐标依次成公差为的等差数列,且的最大值为1.

(1),求函数的单调递增区间;

(2)将的图象向左平移个单位,得到函数的图象,若函数上有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若为曲线的一条切线,求a的值;

(2)已知,若存在唯一的整数,使得,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在四棱锥中,底面是正方形,

1)如图2,设点的中点,点的中点,求证: 平面

2)已知网格纸上小正方形的边长为,请你在网格纸上用粗线画图1中四棱锥的府视图(不需要标字母),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点椭圆的离心率为是椭圆的右焦点直线的斜率为为坐标原点

(1)求的方程

(2)设过点的动直线相交于两点的面积最大时的直线方程

查看答案和解析>>

同步练习册答案