【题目】在直角坐标系中,点,为直线:上的动点,过作的垂线,该垂线与线段的垂直平分线交于点,记的轨迹为.
(1)求的方程;
(2)若过的直线与曲线交于,两点,直线,与直线分别交于,两点,试判断以为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.
【答案】(1);(2)是,和.
【解析】
(1)根据抛物线的定义直接判定求解方程即可.
(2)设直线的方程为,联立与抛物线的方程,再根据韦达定理求得以为直径的圆的方程,进而化简求解定点即可.
(1)连接,则,
则根据抛物线的定义,
点的轨迹是以为焦点,直线为准线的抛物线.
则点的轨迹的方程为.
(2)设直线的方程为,,,
联立整理得:,
,
,,
直线的方程为,
同理:直线的方程为,
令得,,,
设中点的坐标为,则,,
所以.
.
圆的半径为.
所以以为直径的圆的方程为.
展开可得,
令,可得,解得或.
所以以为直径的圆经过定点和.
(2)①当直线不与轴垂直时,设其方程为,,,
由得,,
所以,
,.
所以,
,
直线的方程为,同理可得,直线的方程为,
令得,,,
所以以为直径的圆的方程为,
即,
即,
令,可得,解得或.
所以以为直径的圆经过定点和.
②当直线与轴垂直时,,,以为直径的圆的方程为
,也经过点和.
综上,以为直径的圆经过定点和.
科目:高中数学 来源: 题型:
【题目】某商场对职工开展了安全知识竞赛的活动,将竞赛成绩按照,,… ,分成组,得到下面频率分布直方图.根据频率分布直方图.下列说法正确的是( )
①根据频率分布直方图估计该商场的职工的安全知识竞赛的成绩的众数估计值为;
②根据频率分布直方图估计该商场的职工的安全知识竞赛的成绩的中位数约为;
③若该商场有名职工,考试成绩在分以下的被解雇,则解雇的职工有人;
④若该商场有名职工,商场规定只有安全知识竞赛超过分(包括分)的人员才能成为安全科成员,则安全科成员有人.
A.①③B.②③C.②④D.①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
(1) 求的值;
(2) 若商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年4月25日-27日,北京召开第二届“一带一路”国际高峰论坛,组委会要从6个国内媒体团和3个国外媒体团中选出3个媒体团进行提问,要求这三个媒体团中既有国内媒体团又有国外媒体团,且国内媒体团不能连续提问,则不同的提问方式的种数为 ( )
A. 198B. 268C. 306D. 378
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了预测下月产品销售情况,找出了近7个月的产品销售量(单位:万件)的统计表:
月份代码 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
销售量(万件) |
但其中数据污损不清,经查证,,.
(1)请用相关系数说明销售量与月份代码有很强的线性相关关系;
(2)求关于的回归方程(系数精确到0.01);
(3)公司经营期间的广告宣传费(单位:万元)(),每件产品的销售价为10元,预测第8个月的毛利润能否突破15万元,请说明理由.(毛利润等于销售金额减去广告宣传费)
参考公式及数据:,相关系数,当时认为两个变量有很强的线性相关关系,回归方程中斜率和截距的最小二乘估计公式分别为,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在我国,大学生就业压力日益严峻,伴随着政府政策引导与社会观念的转变,大学生创业意识,就业方向也悄然发生转变.某大学生在国家提供的税收,担保贷款等很多方面的政策扶持下选择加盟某专营店自主创业,该专营店统计了近五年来创收利润数(单位:万元)与时间(单位:年)的数据,列表如下:
(Ⅰ)依据表中给出的数据,是否可用线性回归模型拟合与的关系,请计算相关系数并加以说明(计算结果精确到).(若,则线性相关程度很高,可用线性回归模型拟合);
附:相关系数公式
参考数据.
(Ⅱ)该专营店为吸引顾客,特推出两种促销方案.
方案一:每满元可减元;
方案二:每满元可抽奖一次,每次中奖的概率都为,中奖就可以获得元现金奖励,假设顾客每次抽奖的结果相互独立.
①某位顾客购买了元的产品,该顾客选择参加两次抽奖,求该顾客获得元现金奖励的概率.
②某位顾客购买了元的产品,作为专营店老板,是希望该顾客直接选择返回元现金,还是选择参加三次抽奖?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com