精英家教网 > 高中数学 > 题目详情

如图,在正方体ABCD-A1B1C1D1中,M是棱A1A的中点,N在AB上,且AN∶NB=1∶3,求证:C1M⊥MN.

答案:
解析:

  证明1:设正方体的棱长为a,则MN=

  C1M=,C1N=

  ∵MN+MC1=NC1,∴C1M⊥MN.

  证明2:连结B1M,∵C1B1⊥平面A1ABB1

  ∴B1M为C1M在平面A1ABB1上的射影.

  设棱长为a,∵AN=,AM=,∴tan∠AMN=

  又tan∠A1B1M=,则∠AMN=∠A1B1M,∴B1M⊥MN,

  由三垂线定理知,C1M⊥MN.


提示:

在空间中作出两条直线垂直相对较在平面内作两条直线垂直难.此题C1M与MN是相交直线,一种方法可通过勾股定理来验证它是否垂直,另一方法为:因MN是平面A1ABB1内的一条直线,可考虑MC1在平面A1ABB1内的射影.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,类比平面几何中的结论,得到此三棱锥中的一个正确结论为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,
(1)求证:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的主视图与左视图的面积的比值为(  )

查看答案和解析>>

同步练习册答案