【题目】下面四个命题中,其中正确命题的序号为____________.
① 函数是周期为的偶函数;
② 若 是第一象限的角,且,则 ;
③是函数的一条对称轴方程;
④ 在内方程有3个解
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,底面是直角梯形,,,,侧面是等腰直角三角形,,平面平面,点分别是棱上的点,平面平面.
(1)确定点的位置,并说明理由;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,,是直线上的个不同的点(,、,均为非零常数),其中数列为等差数列.
(1)求证:数列是等差数列;
(2)若点是直线上一点,且,求证:;
(3)设,且当时,恒有(和都是不大于的正整数,且)试探索:若为直角坐标原点,在直线上是否存在这样的点,使得成立?请说明你的理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标坐标系中,曲线的参数方程为(为参数),以直角坐标系的原点为极点,以轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为.
(1)求曲线的普通方程;
(2)若与曲线相切,且与坐标轴交于两点,求以为直径的圆的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①函数是奇函数;
②将函数的图像向左平移个单位长度,得到函数的图像;
③若是第一象限角且,则;
④是函数的图像的一条对称轴;
⑤函数的图像关于点中心对称。
其中,正确的命题序号是______________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一 厂家在一批产品出厂前要对其进行质量检验,检验方案是: 先从这批产品中任取3件进行检验,这3件产品中优质品的件数记为.如果,再从这批产品中任取3件进行检验,若都为优质品,则这批产品通过检验;如果,再从这批产品中任取4件进行检验,若都为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.
假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.
(1) 求这批产品通过检验的概率;
(2) 已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为(单位: 元),求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的焦距为,斜率为的直线与椭圆交于两点,若线段的中点为,且直线的斜率为.
(1)求椭圆的方程;
(2)若过左焦点斜率为的直线与椭圆交于点 为椭圆上一点,且满足,问:是否为定值?若是,求出此定值,若不是,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com