精英家教网 > 高中数学 > 题目详情
如图所示,四棱锥P-ABCD中,底面ABCD是边长为2的菱形,Q是棱PA上的动点.
(Ⅰ)若Q是PA的中点,求证:PC平面BDQ;
(Ⅱ)若PB=PD,求证:BD⊥CQ;
(Ⅲ)在(Ⅱ)的条件下,若PA=PC,PB=3,∠ABC=60°,求四棱锥P-ABCD的体积.
(Ⅰ)证明:连接AC,交BD于O.
因为底面ABCD为菱形,所以O为AC中点.
因为Q是PA的中点,所以OQPC,
因为OQ?平面BDQ,PC?平面BDQ,
所以PC平面BDQ.…(5分)
(Ⅱ)证明:因为底面ABCD为菱形,
所以AC⊥BD,O为BD中点.
因为PB=PD,所以PO⊥BD.
因为PO∩BD=O,所以BD⊥平面PAC.
因为CQ?平面PAC,所以BD⊥CQ.…(10分)
(Ⅲ)因为PA=PC,所以△PAC为等腰三角形.
因为O为AC中点,所以PO⊥AC.
由(Ⅱ)知PO⊥BD,且AC∩BD=O,所以PO⊥平面ABCD,即PO为四棱锥P-ABCD的高.
因为四边形是边长为2的菱形,且∠ABC=60°,所以BO=
3

所以PO=
6

所以VP-ABCD=
1
3
×2
3
×
6
=2
2
,即VP-ABCD=2
2
.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知正方体ABCD-A1B1C1D1的棱长为1,动点P在正方体ABCD-A1B1C1D1表面上运动,且PA=r(0<r<
3
),记点P的轨迹的长度为f(r),则f(
1
2
)
=______.(填上所有可能的值).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将边长为a的正方形ABCD沿对角线AC折起,且使得BD=a,则点D到平面ABC的距离为______

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在120°的二面角内,放置一个半径为3的球,该球切二面角的两个半平面于A、B两点,那么这两个切点的球面上的最短距离为(  )
A.πB.
π
3
C.2πD.3A

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三角形ABC中,AC=BC=
2
2
AB
,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G、F分别是EC、BD的中点.
(Ⅰ)求证:GF底面ABC;
(Ⅱ)求证:AC⊥平面EBC;
(Ⅲ)求几何体ADEBC的体积V.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正方体ABCD-A1B1C1D1的棱长为1,E、G分别是BC、C1D1的中点
(1)求证:EG平面BDD1B1
(2)求E到平面BDD1B1的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点,
(1)求证:AC⊥BC1
(2)求证:AC1平面CDB1
(3)求二面角C1-AB-C的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知矩形ABCD,AB=2,BC=x,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中,则(  )
A.当x=1时,存在某个位置,使得AB⊥CD
B.当x=
2
时,存在某个位置,使得AB⊥CD
C.当x=4时,存在某个位置,使得AB⊥CD
D.?x>0时,都不存在某个位置,使得AB⊥CD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知AB与CD为异面线段,CD?平面α,ABα,M、N分别是线段AC与BD的中点,求证:MN平面α.

查看答案和解析>>

同步练习册答案