精英家教网 > 高中数学 > 题目详情
已知函数+ax-1(a∈R),其中f'(x)是f(x)的导函数.
(Ⅰ)若曲线f(x)在点(1,f(x))处的切线与直线2x-y+1=0平行,求a的值;
(Ⅱ)设g(x)=f'(x)-ax-4,若对一切|a|≤1,都有g(x)<0恒成立,求x的取值范围.
【答案】分析:(I)根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率与直线2x-y+1=0的斜率相等,从而求出a的值;
(II)先求出函数g(x)的解析式,令φ(a)=(1-x)a+4x2-4,因为对一切|a|≤1,都有g(x)<0恒成立等价于对一切|a|≤1,都有φ(a)<0恒成立,然后建立不等关系,解之即可求出x的取值范围.
解答:解:(Ⅰ)f'(x)=4x2+a,
f'(1)=4+a=2,
所以a=-2.

(Ⅱ)g(x)=f'(x)-ax-4=4x2-ax+a-4,
令φ(a)=(1-x)a+4x2-4,
因为对一切|a|≤1,
都有g(x)<0恒成立等价于对一切|a|≤1,都有φ(a)<0恒成立.
所以解得
则当时,对一切|a|≤1,都有g(x)<0恒成立.
点评:本题主要考查了利用导数研究曲线上某点切线方程,以及恒成立问题,同时考查了转化与划归的思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知φ(x)=
a
x+1
,a
为正常数.(e=2.71828…);
(理科做)(1)若f(x)=lnx+φ(x),且a=
9
2
,求函数f(x)在区间[1,e]上的最大值与最小值
(2)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],x1≠x2都有
g(x2)-g(x1)
x2-x1
<-1
,求a的取值范围.
(文科做)(1)当a=2时描绘?(x)的简图
(2)若f(x)=?(x)+
1
?(x)
,求函数f(x)在区间[1,e]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式+ax-1(a∈R),其中f'(x)是f(x)的导函数.
(Ⅰ)若曲线f(x)在点(1,f(x))处的切线与直线2x-y+1=0平行,求a的值;
(Ⅱ)设g(x)=f'(x)-ax-4,若对一切|a|≤1,都有g(x)<0恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年黑龙江省哈尔滨三中高二(下)第二次段考数学试卷(文科)(解析版) 题型:解答题

已知函数
(1)若x=e为y=f(x)-2ex-ax的极值点,求实数a的值
(2)若x是函数f(x)的一个零点,且x∈(b,b+1),其中b∈N,则求b的值
(3)若当x≥1时,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年湖北省荆州市松滋二中高考数学限时训练(解析版) 题型:解答题

(理科)已知函数f(x)=alnx-ax-3(a∈R).
(1)讨论函数f(x)的单调性;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对任意的t∈[1,2],若函数在区间(t,3)上有最值,求实数m取值范围;
(3)求证:ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!(n≥2,n∈N*
(文科) 已知函数
(1)若x=-1是f(x)的极值点且f(x)的图象过原点,求f(x)的极值;
(2)若,在(1)的条件下,是否存在实数b,使得函数g(x)的图象与函数f(x)的图象恒有含x=-1的三个不同交点?若存在,求出实数b的取值范围;否则说明理由.

查看答案和解析>>

同步练习册答案