精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线 的焦点为,过点的直线交抛物线位于第一象限)两点.

(1)若直线的斜率为,过点分别作直线的垂线,垂足分别为,求四边形的面积;

(2)若,求直线的方程.

【答案】1.2.

【解析】试题分析:1直线的方程为与抛物线方程联立得 ,从而得到四边形的面积;

2直线 .设 ,由化简可得

因为,所以从而解得得.

试题解析:

(1)由题意可得,又直线的斜率为,所以直线的方程为.

与抛物线方程联立得,解之得 .

所以点 的坐标分别为 .

所以

所以四边形的面积为.

(2)由题意可知直线的斜率存在,设直线的斜率为,则直线 .设

化简可得

所以 .

因为,所以

所以

所以,即,解得.

因为点位于第一象限,所以,则.

所以的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地随着经济的发展,居民收入逐年增长.该地一建设银行统计连续五年的储蓄存款年底余额得到下表:

年份

储蓄存款

(千亿元)

为便于计算,工作人员将上表的数据进行了处理 ,得到下表:

时间

储蓄存款

关于的线性回归方程;

通过中的方程,求出关于的回归方程;

用所求回归方程预测到年年底,该地储蓄存款额可达多少?

附:线性回归方程,其中 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有六支足球队参加单循环比赛(即任意两支球队只踢一场比赛),第一周的比赛中,各踢了场, 各踢了场, 踢了场,且队与队未踢过, 队与队也未踢过,则在第一周的比赛中, 队踢的比赛的场数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求曲线在点处的切线方程;

2)当时,求最大的整数使得时,函数图象上的点都在

所表示的平面区域内(含边界.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲、乙两个桔柚(球形水果)种植基地,已知所有采摘的桔柚的直径都在范围内(单位:毫米,以下同),按规定直径在内为优质品,现从甲、乙两基地所采摘的桔柚中各随机抽取500个,测量这些桔柚的直径,所得数据整理如下:

(1)根据以上统计数据完成下面列联表,并回答是否有以上的把握认为“桔柚直径与所在基地有关”?

(2)求优质品率较高的基地的500个桔柚直径的样本平均数 (同一组数据用该区间的中点值作代表);

(3)记甲基地直径在范围内的五个桔柚分别为,现从中任取二个,求含桔柚的概率.

附: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,已知直线 为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的直角坐标方程;

(2)设点的极坐标为,直线与曲线的交点为 ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,且点到椭圆上任意一点的最大距离为3,椭圆的离心率为.

(1)求椭圆的标准方程;

(2)是否存在斜率为的直线与以线段为直径的圆相交于两点,与椭圆相交于,且?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为抛物线的焦点为其上一点关于轴对称直线与抛物线交于异于两点.

(1)求抛物线的标准方程和点的坐标

(2)判断是否存在这样的直线使得的面积最小.若存在求出直线的方程和面积的最小值若不存在请说明理由.

查看答案和解析>>

同步练习册答案