A. | [0,1) | B. | [0,π2) | C. | $[0\;,\;\frac{π^2}{4})$ | D. | [0,π) |
分析 先假设函数存在零点x0,得出方程:$\sqrt{a^2+b^2}$sin(x0+φ)=2kπ+$\frac{π}{2}$,再根据三角函数的性质得出结果.
解答 解:假设函数f(x)存在零点x0,即f(x0)=0,
由题意,cos(asinx0)=sin(bcosx0),
根据诱导公式得:asinx0+bcosx0=2kπ+$\frac{π}{2}$,
即,$\sqrt{a^2+b^2}$sin(x0+φ)=2kπ+$\frac{π}{2}$(k∈Z),
要使该方程有解,则$\sqrt{a^2+b^2}$≥|2kπ+$\frac{π}{2}$|min,
即,$\sqrt{a^2+b^2}$≥$\frac{π}{2}$(k=0,取得最小),
所以,a2+b2≥$\frac{π^2}{4}$,
因此,当原函数f(x)没有零点时,a2+b2<$\frac{π^2}{4}$,
所以,a2+b2的取值范围是:[0,$\frac{π^2}{4}$).
故答案为:C.
点评 本题主要考查了函数零点的判定,涉及三角函数的诱导公式,辅助角公式,方程有解条件的转化,以及运用假设的方式分析和解决问题,属于难题.
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,3) | B. | (1,2) | C. | [2,3) | D. | (3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | $\frac{\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com