精英家教网 > 高中数学 > 题目详情
18.定义在[-1,1]上的函数y=f(x)是增函数,且是奇函数,若f(a-1)+f(4a-5)>0,求实数a的取值范围.

分析 根据条件f(x)为奇函数,且在[-1,1]上为增函数,便可由f(a-1)+f(4a-5)>0得到f(a-1)>f(5-4a),进一步得到$\left\{\begin{array}{l}{-1≤a-1≤1}\\{-1≤5-4a≤1}\\{a-1>5-4a}\end{array}\right.$,这样解该不等式组便可得出实数a的取值范围.

解答 解:f(x)是定义在[-1,1]上的奇函数;
∴由f(a-1)+f(4a-5)>0得,f(a-1)>f(5-4a);
又f(x)在[-1,1]上为增函数;
∴$\left\{\begin{array}{l}{-1≤a-1≤1}\\{-1≤5-4a≤1}\\{a-1>5-4a}\end{array}\right.$;
解得$\frac{6}{5}<a≤\frac{3}{2}$;
∴实数a的取值范围是$(\frac{6}{5},\frac{3}{2}]$.

点评 考查奇函数的定义,增函数的定义,以及根据增函数的定义解不等式,注意要使a-1,5-4a在定义域[-1,1]内.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知倾斜角为$\frac{π}{4}$的直线l被双曲线x2-4y2=60截得弦长|AB|=8$\sqrt{2}$,以AB为直径的圆的方程为(x+12)2+(y+3)=32或(x-12)2+(y-3)=32.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列四个结论:
①若x>0,则x>sinx恒成立;
②命题“若x-sinx=0,则x=0”的逆命题为“若x≠0,则x-sinx≠0”;
③P命题的否命题和P命题的逆命题同真同假④若|C|>0则C>0
其中正确结论的个数是(  )
A.1个B.2个C.3个D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义在R上的奇函数f(x)满足:对任意的x∈R,都有f(x)=f(4-x),且x∈(0,2)时,f(x)=x+1,则f(5)等于(  )
A.-2B.2C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={x|2<x<8},集合B={x|a<x<2a-2},若满足B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线x-y+$\sqrt{10}$=0被圆M:x2+y2-4x-4y-1=0所截得的弦长为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知偶函数f(x)=ax4+bx3+cx2+d的图象经过点(0,1),且在x=1处的切线方程是y=x-2,则y=f(x)的解析式为f(x)=$\frac{5}{2}$x4-$\frac{9}{2}$x2+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在如图所示的平面中,点C为半圆的直径AB延长线上的一点,AB=BC=2,过动点P作半圆的切线PQ,若PC=$\sqrt{2}$PQ,则△PAC的面积的最大值为4$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知无穷等比数列{an}的所有项的和为3,则a1的取值范围为{x|0<x<6,且x≠3}.

查看答案和解析>>

同步练习册答案