精英家教网 > 高中数学 > 题目详情
7.设e是椭圆$\frac{x^2}{k}+\frac{y^2}{4}=1$的离心率,且$e∈({\frac{1}{2},1})$,则实数k的取值范围是(  )
A.(0,3)B.$({3,\frac{16}{3}})$C.(0,2)D.$({0,3})∪({\frac{16}{3},+∞})$

分析 当k>4时,e2=$\frac{k-4}{k}∈(\frac{1}{4},1)$⇒k;当0<k<4时,e2=$\frac{4-k}{4}∈(\frac{1}{4},1)$⇒k;

解答 解:当k>4时,e2=$\frac{k-4}{k}∈(\frac{1}{4},1)$⇒k>$\frac{16}{3}$;
当0<k<4时,e2=$\frac{4-k}{4}∈(\frac{1}{4},1)$⇒0<k<3;
故选:D

点评 本题考查了椭圆的离心率,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.如图,是导数y=f′(x)的图象,则函数y=f(x)的图象是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)是定义在R上的偶函数,且f(-x-1)=f(x-1),当x∈[-1,0]时,f(x)=-x3,则关于x的方程f(x)=|cosπx|在[-$\frac{5}{2}$,$\frac{1}{2}$]上的所有实数解之和为(  )
A.-7B.-6C.-3D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.$\int_{-4}^4{\sqrt{16-{x^2}}}dx+\int_{-\frac{π}{2}}^{\frac{π}{2}}{x^3}dx-\int_1^2{({\frac{1}{x}-x})dx=}$8π+ln2-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.男婴为24人,女婴为8人;出生时间在白天的男婴为31人,女婴为26人.
(1)将下面的2×2列联表补充完整;
出生时间
性别
晚上白天合计
男婴
女婴
合计
(2)能否在犯错误的概率不超过0.1的前提下认为婴儿性别与出生时间有关系?
参考公式:(1)K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d);
(2)独立性检验的临界值表:
P(K2≥k00.100.050.010
k02.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=2x,若从区间[-2,2]上任取一个实数x,则使不等式f(x)>2成立的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2016}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f (x)及其导数f′(x),若存在x0,使得f (x0)=f′(x0),则称x0是f (x)的一个“巧值点”,下列函数中,存在“巧值点”的是①②③⑤.(填上所有正确的序号)
①f (x)=x2
②f(x)=sinx,
③f (x)=lnx,
④f (x)=tanx,
⑤f(x)=x+$\frac{1}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设i是虚数单位,${i^7}-\frac{2}{i}$=(  )
A.-iB.-3iC.iD.3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等比数列{an}的首项为a1,公比为q,满足a1(q-1)<0且q>0,则(  )
A.{an}的各项均为正数B.{an}的各项均为负数
C.{an}为递增数列D.{an}为递减数列

查看答案和解析>>

同步练习册答案