精英家教网 > 高中数学 > 题目详情

【题目】正方体中,是棱的中点,是侧面上的动点,且平面,记的轨迹构成的平面为

,使得

②直线与直线所成角的正切值的取值范围是

与平面所成锐二面角的正切值为

④正方体的各个侧面中,与所成的锐二面角相等的侧面共四个.

其中正确命题的序号是________.(写出所有正确命题的序号)

【答案】①②③④

【解析】

中点,中点,中点,先利用中位线的性质判断点的运动轨迹为线段,平面即为平面,画出图形,再依次判断:①利用等腰三角形的性质即可判断;②直线与直线所成角即为直线与直线所成角,设正方体的棱长为2,进而求解;③由,取中点,则,即为与平面所成的锐二面角,进而求解;④由平行的性质及图形判断即可.

中点,连接,则,所以,所以平面即为平面,

中点,中点,连接,则易证得,

所以平面平面,所以点的运动轨迹为线段,平面即为平面.

①取中点,因为是等腰三角形,所以,又因为,所以,故①正确;

②直线与直线所成角即为直线与直线所成角,设正方体的棱长为2,当点中点时,直线与直线所成角最小,此时,

当点与点或点重合时,直线与直线所成角最大,此时,

所以直线与直线所成角的正切值的取值范围是,②正确;

与平面的交线为,,取中点,则即为与平面所成的锐二面角,,所以③正确;

④正方体的各个侧面中,平面,平面,平面,平面与平面所成的角相等,所以④正确.

故答案为:①②③④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中,已知四边形AA1C1C为矩形,AA16ABAC4,∠BAC=∠BAA160°,∠A1AC的角平分线ADCC1D.

1)求证:平面BAD⊥平面AA1C1C

2)求二面角AB1C1A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在全球抗击新冠肺炎疫情期间,我国医疗物资生产企业加班加点生产口罩、防护服、消毒水等防疫物品,保障抗疫一线医疗物资供应,在国际社会上赢得一片赞誉.我国某口罩生产企业在加大生产的同时,狠抓质量管理,不定时抽查口罩质量,该企业质检人员从所生产的口罩中随机抽取了100个,将其质量指标值分成以下六组:,…,,得到如下频率分布直方图.

1)求出直方图中的值;

2)利用样本估计总体的思想,估计该企业所生产的口罩的质量指标值的平均数和中位数(同一组中的数据用该组区间中点值作代表,中位数精确到0.01);

3)现规定:质量指标值小于70的口罩为二等品,质量指标值不小于70的口罩为一等品.利用分层抽样的方法从该企业所抽取的100个口罩中抽出5个口罩,并从中再随机抽取2个作进一步的质量分析,试求这2个口罩中恰好有1个口罩为一等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的左、右焦点分别为,点在椭圆上,直线与椭圆的另一个交点分别为.

1)若点坐标为,且,求椭圆的方程;

2)设,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知两定点,动点满足.

1)求动点的轨迹的方程;

2)轨迹上有两点,它们关于直线对称,且满足,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,直线过点,倾斜角为

1)求曲线的直角坐标方程与直线l的参数方程;

2)设直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年全球爆发新冠肺炎,人感染了新冠肺炎病毒后常见的呼吸道症状有:发热、咳嗽、气促和呼吸困难等,严重时会危及生命.随着疫情的发展,自202025日起,武汉大面积的爆发新冠肺炎,政府为了及时收治轻症感染的群众,逐步建立起了14家方舱医院,其中武汉体育中心方舱医院从212日开舱至38日闭仓,累计收治轻症患者1056人.据部分统计该方舱医院从226日至32日轻症患者治愈出仓人数的频数表与散点图如下:

日期

2.26

2.27

2.28

2.29

3.1

3.2

序号

1

2

3

4

5

6

出仓人数

3

8

17

31

68

168

根据散点图和表中数据,某研究人员对出仓人数与日期序号进行了拟合分析.从散点图观察可得,研究人员分别用两种函数①分析其拟合效果.其相关指数可以判断拟合效果,R2越大拟合效果越好.已知的相关指数为

1)试根据相关指数判断.上述两类函数,哪一类函数的拟合效果更好?(注:相关系数与相关指数R2满足,参考数据表中

2根据(1)中结论,求拟合效果更好的函数解析式;(结果保留小数点后三位)

33日实际总出仓人数为216人,按①中的回归模型计算,差距有多少人?

(附:对于一组数据,其回归直线为

相关系数

参考数据:

3.5

49.17

15.17

3.13

894.83

19666.83

10.55

13.56

3957083

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆周率π是数学中一个非常重要的数,历史上许多中外数学家利用各种办法对π进行了估算.现利用下列实验我们也可对圆周率进行估算.假设某校共有学生N人,让每人随机写出一对小于1的正实数ab,再统计出ab1能构造锐角三角形的人数M,利用所学的有关知识,则可估计出π的值是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一、二、三、四年级本科生人数之比为6554,则应从一年级中抽取90名学生

B.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率为

C.已知变量xy正相关,且由观测数据算得=3=35,则由该观测数据算得的线性回归方程可能是=0.4x+2.3

D.从装有2个红球和2个黑球的口袋内任取2个球,至少有一个黑球与至少有一个红球是两个互斥而不对立的事件

查看答案和解析>>

同步练习册答案