精英家教网 > 高中数学 > 题目详情

【题目】已知函数的定义域为,且存在实常数,使得对于定义域内任意,都有成立,则称此函数具有性质

1)判断函数是否具有性质,若具有性质,则求出的值;若不具有性质,请说明理由;

2)已知函数具有性质且函数上的最小值为;当时,,求函数在区间上的值域;

3)已知函数既具有性质,又具有性质,且当时,,若函数,在恰好存在个零点,求的取值范围.

【答案】1)具有,;(2;(3

【解析】

1)假设函数具备性质,代入即可求出的值;

2)根据题意可知,再根据函数的最小值即可求出值域;

3)由题得,作出图象,即可求出的取值范围.

解:(1)假设具有性质

恒成立,

等式两边平方整理得,,因为等式恒成立,

所以,解得

2函数具有性质

时,,在单调递减

时,得:

时,,在单调递增

函数的最小值,得:

时,,单调递减

此时的值域为:

3既具有性质,即,则函数为偶函数,

既具有性质,即

且当时,

作出函数的图象如图所示:

函数,在恰好存在个零点

恰好有个交点

的取值范围为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当x>0时,证明

(2)当x>-1且x0时,不等式 恒成立,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线lkxy12k0(kR).

(1)证明:直线l过定点;

(2)若直线不经过第四象限,求k的取值范围;

(3)若直线lx轴负半轴于A,交y轴正半轴于B,△AOB的面积为S(O为坐标原点),求S的最小值并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线是三个不同的平面,给出下列四个命题:(1)若,那么;(2)若,那么;(3)若,那么;(4)若,则,其中正确命题的序号是(

A.1)(2B.2)(3C.1)(3D.2)(4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,椭圆C的离心率是,抛物线E的焦点FC的一个顶点.

)求椭圆C的方程;

)设PE上的动点,且位于第一象限,E在点P处的切线C交与不同的两点AB,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M

i)求证:点M在定直线上;

ii)直线y轴交于点G,记的面积为的面积为,求的最大值及取得最大值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如图,则下面结论中错误的一个是(  )

A. 甲的极差是29 B. 甲的中位数是24

C. 甲罚球命中率比乙高 D. 乙的众数是21

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,对于的一个子集,若存在不大于的正整数,使得对中的任意一对元素,都有,则称具有性质.

1)当时,试判断集合是否具有性质?并说明理由;

2)当时,若集合具有性质.

①那么集合是否一定具有性质?并说明理由;

②求集合中元素个数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:①越小,XY有关联的可信度越小;②若两个随机变量的线性相关性越强,则相关系数r的值越接近于1;“若,则类比推出,“若,则;④命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了“三段论”,推理形式错误.其中说法正确的有( )个

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形的两条对角线相交于点 边所在直线的方程为,点边所在的直线上.

(Ⅰ)求边所在直线的方程;

(Ⅱ)求矩形外接圆的方程.

查看答案和解析>>

同步练习册答案