精英家教网 > 高中数学 > 题目详情

【题目】下列四个函数中,以π为最小正周期,且在区间 上为减函数的是(  )
A.y=2|sinx|
B.y=cosx
C.y=sin2x
D.y=|cosx|

【答案】A
【解析】解:满足π为最小正周期,且在区间 上为减函数:

对于A:y=2|sinx|的图象是把y=2sinx的图象x轴下方翻折得到的,周期为π,在区间 上为减函数,∴A对;

对于B:y=cosx的周期为2π,∴B不对;

对于C:y=sin2x的周期为π,在( )上为减函数,( ,π)上为增函数,∴C不对.

对于D:y=|cosx|的图象是把y=cosx的图象x轴下方翻折得到的,周期为π,在区间 上为增函数,∴D对;

故答案为:A

根据三角函数的性质逐一判断选项可得结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设F1 , F2分别是C: + =1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.
(1)若直线MN的斜率为 ,求C的离心率;
(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:

甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为,边界忽略不计)即为中奖.

乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义方程 的实数根 叫做函数 的“新驻点”,若函数 的“新驻点”分别为 ,则 的大小关系为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆方程 为: 椭圆的右焦点为 ,离心率为 ,直线 与椭圆 相交于 两点,且
(1)椭圆的方程
(2)求 的面积;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年初的时候,国家政府工作报告明确提出, 年要坚决打好蓝天保卫战,加快解决燃煤污染问题,全面实施散煤综合治理.实施煤改电工程后,某县城的近六个月的月用煤量逐渐减少, 月至月的用煤量如下表所示:

月份

用煤量(千吨)

(1)由于某些原因, 中一个数据丢失,但根据月份的数据得出样本平均值是,求出丢失的数据;

(2)请根据月份的数据,求出关于的线性回归方程

(3)现在用(2)中得到的线性回归方程中得到的估计数据与月的实际数据的误差来判断该地区的改造项目是否达到预期,若误差均不超过,则认为该地区的改造已经达到预期,否则认为改造未达预期,请判断该地区的煤改电项目是否达预期?

(参考公式:线性回归方程,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用“<”将0.2﹣0.2、2.3﹣2.3、log0.22.3从小到大排列是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,a2=2,以后各项由an=an1+an2(n≥3)给出.
(1)写出此数列的前5项;
(2)通过公式bn= 构造一个新的数列{bn},写出数列{bn}的前4项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】联合国教科文组织规定,每年的4月23日是“世界读书日”.某校研究生学习小组为了解本校学生的阅读情况,随机调查了本校400名学生在这一天的阅读时间(单位:分钟),将时间数据分成5组:,并整理得到如下频率分布直方图.

(1)求的值;

(2)试估计该学校所有学生在这一天的平均阅读时间;

(3)若用分层抽样的方法从这400名学生中抽取50人参加交流会,则在阅读时间为的两组中分别抽取多少人?

查看答案和解析>>

同步练习册答案