精英家教网 > 高中数学 > 题目详情

【题目】已知三棱锥A-BCD,△ABC是等腰直角三角形,ACBC,BC=2,AD平面BCD,AD=1.

(1)求证:平面ABC平面ACD;

(2)EAB中点,求点A到平面CED的距离.

【答案】1)见解析;(2.

【解析】试题分析:(1)通过可证得平面,又平面,利用面面垂直的判定定理可得证.

(2) 利用等体积法,解得.

试题解析(1)证明:因为平面平面,所以,又因为,所以平面平面,所以平面平面.

2)由已知可得,取中点为,连结,由于,所以为等腰三角形,从而,由(1)知平面所以到平面的距离为1,令到平面的距离为,有,解得.

点晴:本题考查的是空间的线面关系和空间多面体体积的求解.第一问要考查的是面面垂直,通过先证明线和面内的两条相交直线垂直证得线面垂直,再结合面面垂直的判定定理,可证得;对于第二问点到平面的距离利用等体积法,,解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的参数方程为 (其中为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系中,直线的极坐标方程为.

C的普通方程和直线的倾斜角;

设点(0,2),交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,

规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,

得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.

优秀

非优秀

合计

甲班

10

乙班

30

合计

110

(1)请完成上面的列联表;

(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为成绩与班级有关系

(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。

参考公式与临界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,为正三角形,平面平面.

1)求证:平面平面

2)求三棱锥的体积;

3)在棱上是否存在点,使得平面?若存在,请确定点的位置并证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知函数f(x)的定义域为[0,1],求f(x2+1)的定义域;

(2)已知f()的定义域为[0,3],求f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+1,x∈R.

(1)分别计算f(1)-f(-1),f(2)-f(-2),f(3)-f(-3)的值;

(2)由(1)你发现了什么结论?并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx,g(x)=0.5x2-bx, (b为常数)。

(1)函数f(x)的图象在点(1,f(1))处的切线与函数g(x)的图象相切,求实数b的值;

(2)若函数h(x)=f(x)+g(x)在定义域上不单调,求实数b的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)=xα,当x>1时,恒有f(x)<x,则α的取值范围是(  )

A. (0,1) B. (-∞,1)

C. (0,+∞) D. (-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数,若满足①;②当,且时,都有;③当,且时, ,则称为“偏对函数”.现给出四个函数: . 则其中是“偏对称函数”的函数个数为( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

同步练习册答案