精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=ln(1+ax)-$\frac{2x}{x+2}$(a>0)
(1)当a=$\frac{1}{2}$ 时,求f(x) 的极值;
(2)若a∈($\frac{1}{2}$,1)时f(x) 存在两个极值点x1,x2,试比较f(x1)+f(x2) 与f(0)的大小.

分析 (1)求出函数的定义域,求出导数,求得单调区间,即可得到极值;
(2)求出导数,求得极值点,再求极值之和,构造当0<t<1时,g(t)=2lnt+$\frac{2}{t}$-2,运用导数,判断单调性,即可得到结论.

解答 解:(1)f(x)=ln(1+$\frac{1}{2}$x)-$\frac{2x}{x+2}$,定义域$\left\{\begin{array}{l}{1+\frac{1}{2}x>0}\\{x+2≠0}\end{array}\right.$,解得x>-2,
f′(x)=$\frac{x-2}{{(x+2)}^{2}}$,即有(-2,2)递减,(2,+∞)递增,
故f(x)的极小值为f(2)=ln2-1,没有极大值.
(2)f(x)=ln(1+ax)-$\frac{2x}{x+2}$(a>0),x>-$\frac{1}{a}$,
f′(x)=$\frac{{ax}^{2}-4(1-a)}{(1+ax{)(x+2)}^{2}}$,
由于$\frac{1}{2}$<a<1,则a(1-a)∈(0,$\frac{1}{4}$),-$\frac{1}{a}$<-$\frac{2\sqrt{a(1-a)}}{a}$,
ax2-4(1-a)=0,解得x=±$\frac{2\sqrt{a(1-a)}}{a}$,
f(x1)+f(x2)=ln[1+2 $\sqrt{a(1-a)}$]+ln[1-2 $\sqrt{a(1-a)}$]-$\frac{4\sqrt{1-a}}{2\sqrt{1-a}+2\sqrt{a}}$-$\frac{4\sqrt{1-a}}{-2\sqrt{1-a}+2\sqrt{a}}$,
即f(x1)+f(x2)=ln[(1-2a)2]+$\frac{2}{2a-1}$-2,
设t=2a-1,当$\frac{1}{2}$<a<1,0<t<1,则设f(x1)+f(x2)=g(t)=lnt2+$\frac{2}{t}$-2,
当0<t<1时,g(t)=2lnt+$\frac{2}{t}$-2,
g′(t)=$\frac{2}{t}$-$\frac{2}{{t}^{2}}$=$\frac{2(t-1)}{{t}^{2}}$<0,
g(t)在0<t<1上递减,g(t)>g(1)=0,
即f(x1)+f(x2)>f(0)=0恒成立,
综上述f(x1)+f(x2)>f(0).

点评 本题考查导数的运用:求单调区间和极值,同时考查构造函数,运用导数判断单调性,运用单调性比较大小,运用已知不等式和累加法证明不等式的方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在棱长为2的正方体△ABCD-A1B1C1D1中,M、N分别是A1B1、CD的中点,则点B到截面AMC1N的距离为(  )
A.$\sqrt{2}$B.$\frac{2\sqrt{6}}{3}$C.$\sqrt{3}$D.$\frac{4\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.向量$\overrightarrow{OA}$对应的复数为1+4i,向量$\overrightarrow{OB}$对应的复数为-3+2i,则向量$\overrightarrow{OA}+\overrightarrow{OB}$对应的复数为(  )
A.4+2iB.-4-2iC.-2+4iD.-2+6i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.数列{an}满足${a_1}=3,\frac{1}{{{a_n}+1}}-\frac{1}{a_n}=5({n∈{N_+}})$,则an=$\frac{3}{15n-14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知三次函数f(x)=x3+ax2+7ax在 (-∞,+∞)是增函数,则a的取值范围是(  )
A.0≤a≤21B.a=0或a=7C.a<0或a>21D.a=0或a=21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.命题“?x∈R,x2+x+1>0”的否定为(  )
A.?x∈R,x2+x+1≤0B.?x∈R,x2+x+1≤0C.?x∈R,x2+x+1<0D.?x∈R,x2+x+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在平行四边形ABCD中,设AB的长为a(a>0),AD=1,∠BAD=60°,E为CD的中点.若$\overrightarrow{AC}$•$\overrightarrow{BE}$=1,则a的值为(  )
A.$\frac{1}{2}$B.2C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知$f({sinx})=2x+1,x∈[{-\frac{π}{2},\frac{π}{2}}]$,则f(cos10)=21-7π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.圆(x-1)2+(y-1)2=1上的点到直线x-y=2的距离的最大值是1+$\sqrt{2}$.

查看答案和解析>>

同步练习册答案