精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=ex+ax2(a∈R).
(1)若函数f(x)在R上单调,且y=f′(x)有零点,求a的值;
(2)若对x∈[0,+∞),有 ≥1,求a的取值范围.

【答案】
(1)解:f′(x)=ex+2ax,

记g(x)=ex+2ax,则g′(x)=ex+2a,

①a=0时,f(x)=ex,显然不合题意;

②a>0时,g′(x)>0,f′(x)在R递增,

∵f′(0)=1>0,f′(﹣ )<0,

故y=f′(x)有唯一零点x1,显然x∈(﹣∞,x1)时,f′(x)<0,

x∈(x1,+∞)时,f′(x)>0,f(x)在R不单调,不合题意;

③a<0时,由g′(x)=0得x=ln(﹣2a),于是f′(x)在(﹣∞,ln(﹣2a))递减,

在(ln(﹣2a),+∞)递增,因此要满足条件,必须且只需f′[ln(﹣2a)]=0,

即﹣2a+2aln(﹣2a)=0,解得:a=﹣


(2)解:a<0时,若x>﹣ ,则ax+1<0,根据指数函数和幂函数的增长速度知:

存在x0,当x>x0时,必有ex>﹣ax2,即ex+ax2>0,

因此x>max{﹣ ,x0},有 <0,显然不合题意,

当a≥0时,记h(x)=ex+ax2﹣ax﹣1,则 ≥1当且仅当h(x)≥0,

h′(x)=ex+2ax﹣a,显然h′(x)在[0,+∞)递增,

①a≤1时,由h′(0)=1﹣a<1,h′(1)=e+a>0,

得h′(x)=0在[0,+∞)上有且只有1个实数根,

不妨设该实根为x1,当0<x<x1时,h′(x)<0,从而h(x)在(0,x1)递减,

故x∈(0,x1)时,h(x)<h(0)=0,不合题意,

综上,a的范围是[0,1]


【解析】(1)求出函数的导数,通过讨论a的范围结合函数的单调性以及函数的零点求出a的值即可;(2)通过讨论a的范围,根据函数的单调性求出函数的最值,从而确定满足条件的a的范围即可.
【考点精析】掌握利用导数研究函数的单调性和函数的最大(小)值与导数是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】Sn为数列{an}的前n项和,已知an>0,an2+2an=4Sn+3
(I)求{an}的通项公式;
(Ⅱ)设bn= ,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在斜三棱柱ABC﹣A1B1C1中,侧面ACC1A1⊥底面ABC,底面ABC是等腰直角三角形,CA=CB,A1B⊥AC1
(1)求证:平面A1BC⊥平面ABC1
(2)若直线AA1与底面ABC所成的角为60°,求直线AA1与平面ABC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,设倾斜角为的直线为参数与曲线为参数相交于不同的两点.

1,求线段中点的坐标;

2,其中,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数a为常数

1)判断fx)在定义域内的单调性

2)若fx)在上的最小值为,求a的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,为线段的中点,为线段上一点.

(1)求证:

(2)求证:平面平面

(3)当平面时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Sn为数列{an}的前项的和,且Sn = (an -1)(nN*), 数列{bn }的通项公式bn = 4n+5.

①求证:数列{an }是等比数列;

②若d{a1 a2 a3 ,……}∩{b1b2 b3 ,……},则称d为数列{an }{bn }的公共项,按它们在原数列中的先后顺序排成一个新的数列{dn },求数列{dn }的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校有2500名学生,其中高一1000人,高二900人,高三600人,为了了解学生的身体健康状况,采用分层抽样的方法,若从本校学生中抽取100人,从高一和高三抽取样本数分别为a,b,且直线ax+by+8=0与以A(1,﹣1)为圆心的圆交于B,C两点,且∠BAC=120°,则圆C的方程为(
A.(x﹣1)2+(y+1)2=1
B.(x﹣1)2+(y+1)2=2
C.(x﹣1)2+(y+1)2=
D.(x﹣1)2+(y+1)2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如右图所示,一座圆拱(圆的一部分)桥,当水面在图位置m时,拱顶离水面2 m,水面宽 12 m,当水面下降1 m后,水面宽多少米?

查看答案和解析>>

同步练习册答案