精英家教网 > 高中数学 > 题目详情

【题目】若f(x)=x2-x+b,且f(log2a)=b,log2f(a)=2(a>0且a≠1).

(1)求a,b的值;

(2)求f(log2x)的最小值及相应x的值.

【答案】(1)2,2;(2)当时,有最小值

【解析】

(1)再根据即可得到从而求出求出,再根据即可求出; (2)中的换上即可得到进行配方即可求出的最小值及对应的.

(1)∵f(x)=x2-x+b,∴f(log2a)=(log2a)2-log2a+b=b,

∴log2a=1,∴a=2. 又∵log2f(a)=2,∴f(a)=4.

∴a2-a+b=4,∴b=2.

(2)由(1)f(x)=x2-x+2.

∴f(log2x)=(log2x)2-log2x+2=(log2x-)2.

∴当log2x=,即x=时,f(log2x)有最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若函数的图象与直线相切,求的值;

(2)求在区间上的最小值;

(3)若函数有两个不同的零点 ,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(1+x2)+ax.(a≤0)
(1)若f(x)在x=0处取得极值,求a的值;
(2)讨论f(x)的单调性;
(3)证明:(1+ )(1+ )…(1+ )< (n∈N* , e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆x2+ =1的左、右顶点分别为A、B,双曲线Γ以A、B为顶点,焦距为2 ,点P是Γ上在第一象限内的动点,直线AP与椭圆相交于另一点Q,线段AQ的中点为M,记直线AP的斜率为k,O为坐标原点.
(1)求双曲线Γ的方程;
(2)求点M的纵坐标yM的取值范围;
(3)是否存在定直线l,使得直线BP与直线OM关于直线l对称?若存在,求直线l方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)求的单调增区间.

)求的最大值,及此时的取值.

)若的一个零点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的可导函数满足,不等式的解集为,则=

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

1)若的图象在点处的切线方程为,求在区间上的最大值和最小值;

2)若在区间上不是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xoy中,直线l的参数方程是 (t为参数),以射线ox为极轴建立极坐标系,曲线C的极坐标方程是 2sin2θ=1.
(1)求曲线C的直角坐标方程;
(2)求直线l与曲线C相交所得的弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在各棱长均为4的直四棱柱底面为菱形 为棱上一点.

1求证:平面平面

2求二面角的余弦值.

查看答案和解析>>

同步练习册答案