精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C的对边分别为a,b,c,且
sinA
a
=
3
cosC
c

(1)求角C的大小;
(2)如果a+b=6,
CA
CB
=4,求c的值.
分析:(1)根据正弦定理得到一个关系式,然后与已知条件联立即可求出tanC的值,根据C的范围和特殊角的三角函数值即可求出C的度数;
(2)由(1)中C的度数,求出cosC的值,然后利用平面向量的数量积的运算法则化简
CA
CB
=4,即可求出ab的值,利用余弦定理得到一个关系式,再由a+b的值和求出的ab代入关系式即可求出c的值.
解答:解:(1)因为
a
sinA
=
c
sinC
sinA
a
=
3
cosC
c

所以sinC=
3
cosC,即tanC=
3

由C∈(0,π),得到C=
π
3

(2)由(1)得:cosC=cos
π
3
=
1
2

CA
CB
=|
CA
|•|
CB
|cosC=
1
2
ab,又
CA
CB
=4,所以ab=8,
又因为a+b=-6,根据余弦定理得:c2=a2+b2-2abcosC=(a+b)2-3ab=12,
由c>0,解得c=2
3
点评:此题考查学生灵活运用正弦、余弦定理及平面向量的数量积的运算法则化简求值,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案