精英家教网 > 高中数学 > 题目详情
设抛物线y2=4x被直线y=2x+b所截得的弦长为3
5
,则b=______.
直线y=2x+b代入y2=4x,消去y,得4x2+(4b-4)x+b2=0.
设A(x1,y1),B(x2,y2
则x1+x2=b-1,x1x2=
b2
4

所以|AB|=
1+k2
|x1-x2|=
1+4
(b-1)2-b2
=3
5

所以b=-4.
故答案为:-4.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知两点M(-1,0)、N(1,0),动点P(x,y)满足|
MN
|•|
NP
|-
MN
MP
=0,
(1)求点P的轨迹C的方程;
(2)假设P1、P2是轨迹C上的两个不同点,F(1,0),λ∈R,
FP1
FP2
,求证:
1
|FP1|
+
1
|FP2|
=1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点(0,1)引直线与双曲线x2-y2=1只有一个公共点,这样的直线共有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线L过点P(2,0),斜率为
4
3
,直线L和抛物线y2
=2x相交于A,B两点,设线段AB的中点为M,求:
(1)P,M两点间的距离/PM/:(2)M点的坐标;(3)线段AB的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的一个焦点为(
2
,0)
,且长轴长为短轴长的
3
倍.
(1)求椭圆的标准方程;
(2)设椭圆的下顶点为A,且椭圆与直线y=kx+m(k≠0)相交于不同的两点M,N.当|AM|=|AN|时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知两点F1(-
2
,0)
F2(
2
,0)
,满足条件|PF2|-|PF1|=2的动点P的轨迹是曲线E,直线l:y=kx-1与曲线E交于A、B两点.
(Ⅰ)求k的取值范围;
(Ⅱ)如果|AB|=6
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点,焦点在x轴上的椭圆焦距为2,离心率为
1
2

(1)求椭圆的标准方程
(2)若直线l过点(1,2)且倾斜角为45°且与椭圆相交于A,B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设A,B∈R,A≠B且AB≠0,则方程Bx-y+A=0和
x2
B
-
y2
A
=1
在同一坐标系下的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1,F2是椭圆
x2
16
+
y2
9
=1
的两焦点,过点F2的直线交椭圆于A,B两点,在△AF1B中,若有两边之和是10,则第三边的长度为______.

查看答案和解析>>

同步练习册答案