【题目】设函数.
(1)当时,求函数的单调递增区间;
(2)对任意恒成立,求实数的取值范围.
【答案】(1);(2).
【解析】试题分析:(1)求函数的导数,当时,令,即可求得函数的单调递增区间;(2)令,则成立等价于,对进行分类讨论,若,可证恒成立;若时,求得的单调性及最大值,即可证明;若时,求得的单调性,即可证;从而可得实数的取值范围.
试题解析:(1),
由,令得: ,
所以当时,单调递增区间是;
(2)令,则成立等价于,
①若,当,则,
而,即恒成立;
②若时,则,
当,由是减函数, ,
又,所以在上是减函数,
此时当, ;
③若时, , ,
所以在有零点,
在区间,设,
所以在上是减函数,
即在有唯一零点,且在上, ,
在为增函数,即在上,
所以,不合题意,
综上可得,符合题意的的取值范围是.
科目:高中数学 来源: 题型:
【题目】椭圆C: 的左、右焦点分别是F1、F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为l.
(1)求椭圆C的方程;
(2)点P是椭圆C上除长轴端点外的任一点,连接PF1、PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围.
(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.设直线PF1、PF2的斜率分别为k1、k2,若k≠0,试证明为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数与的图象关于轴对称,当函数和在区间同时递增或同时递减时,把区间叫做函数的“不动区间”.若区间为函数的“不动区间”,则实数的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A(1)五人站一排,必须站右边,则不同的排法有多少种;
(2)晚会原定的5个节目已排成节目单,开演前又加了2个节目,若将这2 个节目插入原节目单中,则不同的插法有多少种.
B.有四个编有1、2、3、4的四个不同的盒子,有编有1、2、3、4的四个不同的小球,现把小球放入盒子里.
①小球全部放入盒子中有多少种不同的放法;
②恰有一个盒子没放球有多少种不同的放法;
③恰有两个盒子没放球有多少种不同的放法.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线过椭圆的右焦点,抛物线的焦点为椭圆的上顶点,且交椭圆于两点,点在直线上的射影依次为.
(1)求椭圆的方程;
(2)若直线交轴于点,且,当变化时,证明: 为定值;
(3)当变化时,直线与是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.如图,可以发现,任何一个大于1的“正方形数”都可以看作两个相邻的“三角形数”之和,下列等式中,符合这一规律的表达式是( )
①13=3+10;②25=9+16;③36=15+21;④49=18+31;⑤64=28+36.
A. ①④B. ②⑤C. ③⑤D. ②③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com