精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥的底面为直角梯形,的中点.

(Ⅰ)求证:平面

(Ⅱ)若平面平面,异面直线所成角为60°,且是钝角三角形,求二面角的正弦值

【答案】(Ⅰ)详见解析;(Ⅱ)

【解析】

(Ⅰ)取的中点,连接,证明四边形为平行四边形,得到即可

(Ⅱ)由条件得出,然后证明平面,然后以为坐标原点,所在直线为轴、轴建立空间直角坐标系,分别求出平面和平面的法向量即可.

(Ⅰ)证明:取的中点,连接

因为的中点,则,且

,且,所以

所以四边形为平行四边形,

所以平面平面

所以平面

(Ⅱ)由题意可知,所以或其补角为异面直线所成角,

为钝角三角形,所以

又平面平面,平面平面

所以平面

为坐标原点,所在直线为轴、轴建立空间直角坐标系,

向量

设平面的法向量为

,令

得平面的一个法向量为

同理可得平面的一个法向量为

设二面角的平面角为

故二面角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,摩天轮的半径,它的最低点距地面的高度忽略不计.地上有一长度为的景观带,它与摩天轮在同一竖直平面内,且.从最低点处逆时针方向转动到最高点处,记.

1)当时,求点距地面的高度

2)试确定的值,使得取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最大值为,且曲线x0处的切线与直线平行(其中e为自然对数的底数).

1)求实数ab的值;

2)如果,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直四棱柱被平面所截,所得的一部分如图所示,

1)证明:平面

2)若,平面与平面所成角的正切值为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若上存在单调递增区间,求实数的取值范围;

2)设,若,恒有成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱中,平面为棱的中点

1)证明:

2)设点在线段上,且直线与平面所成角的正弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】东京夏季奥运会推迟至2021723日至88日举行,此次奥运会将设置4 100米男女混泳接力赛这一新的比赛项目,比赛的规则是:每个参赛国家派出22女共计4名运动员参加比赛,按照仰泳蛙泳蝶泳自由泳的接力顺序,每种泳姿100米且由1名运动员完成,且每名运动员都要出场.若中国队确定了备战该项目的4名运动员名单,其中女运动员甲只能承担仰泳或者自由泳,男运动员乙只能承担蝶泳或者蛙泳,剩下2名运动员四种泳姿都可以承担,则中国队参赛的安排共有(

A.144B.8C.24D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】X是有限集,t为正整数,F是包含t个子集的子集族:F=.如果F中的部分子集构成的集族S满足:对S中任意两个不相等的集合AB均不成立,则称S为反链.S1为包含集合最多的反链,S2是任意反链.证明:存在S2S1的单射f,满足成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C:过原点的直线与椭圆交于AB两点(点A在第一象限),过点Ax轴的垂线,垂足为点,设直线BE与椭圆的另一交点为P,连接AP得到直线l,交x轴于点M,交y轴于点N.

1)若,求直线AP的斜率;

2)记的面积分别为S1S2S3,求的的最大值.

查看答案和解析>>

同步练习册答案