精英家教网 > 高中数学 > 题目详情

(本题满分15分)

已知椭圆C:+=1(ab>0)的离心率为,且经过点P(1,).

(1)求椭圆C的方程;

(2)设F是椭圆C的右焦点,M为椭圆上一点,以M

圆心,MF为半径作圆M.问点M横坐标满足什么条

件时,圆My轴有两个交点?

(3)设圆My轴交于DE两点,

求点DE距离的最大值.

解:(1)∵椭圆+=1(ab>0)的离心率为,且经过点P(1,),

∴,即 ,解得 ,………………3分

∴椭圆C的方程为+=1。………………5分

(2)易求得F(1,0)。设M(x0y0),则+=1, 圆M的方程为(x-x0)2+(y-y0)2=(1-x0)2+y02

x=0,化简得y2-2y0y+2x0-1=0,⊿=4y02-4(2x0-1)2>0……①。

y02=3(1-)代入①,得3x02+8x0-16<0,解出 -4<x0<故-2≤x0<……9分

(3)设D(0,y1),E(0,y2),其中y1y2。由(2),得

DE= y2- y1===,

x0=-时,DE的最大值为。………………15分

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011年江苏省如皋市五校高二下学期期中考试理科数学 题型:解答题

((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省招生适应性考试文科数学试卷(解析版) 题型:解答题

(本题满分15分)设函数

(Ⅰ)若函数上单调递增,在上单调递减,求实数的最大值;

(Ⅱ)若对任意的都成立,求实数的取值范围.

注:为自然对数的底数.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省温州市十校联合体高三上学期期初摸底文科数学 题型:解答题

(本题满分15分)已知直线与曲线相切

1)求b的值;

2)若方程上恰有两个不等的实数根,求

①m的取值范围;

②比较的大小

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省温州市十校联合体高三上学期期中考试文科数学 题型:解答题

(本题满分15分)已知抛物线),焦点为,直线交抛物线两点,是线段的中点,

  过轴的垂线交抛物线于点

  (1)若抛物线上有一点到焦点的距离为,求此时的值;

  (2)是否存在实数,使是以为直角顶点的直角三角形?若存在,求出的值;若不存在,说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省六校高三第一次联考文科数学 题型:解答题

(本题满分15分)

已知函数

(1)求的单调区间;

(2)设,若上不单调且仅在处取得最大值,求的取值范围.

 

查看答案和解析>>

同步练习册答案