精英家教网 > 高中数学 > 题目详情
如图所示,在直三棱柱ABC-A1B1C1中, AC⊥BC.

(1) 求证:平面AB1C1⊥平面AC1
(2) 若AB1⊥A1C,求线段AC与AA1长度之比;
(3) 若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,试确定点E的位置;若不存在,请说明理由.
(1) 直三棱柱中,所以B1C1⊥CC1; 因为AC⊥BC ,所以B1C1⊥A1C1,所以B1C1⊥平面AC1 .从而平面AB1C1⊥平面AC1(2) 1:1;(3) 点E位于AB的中点时,能使DE∥平面AB1C1

试题分析:(1)由于ABC-A1B1C1是直三棱柱,所以B1C1⊥CC1;
又因为AC⊥BC ,所以B1C1⊥A1C1,所以B1C1⊥平面AC1
由于B1C1平面AB1C1,从而平面AB1C1⊥平面AC1
(2)由(1)知,B1C1⊥A1C .所以,若AB1⊥A1C,则可
得:A1C⊥平面AB1C1,从而A1C⊥  AC1
由于ACC1A1是矩形,故AC与AA1长度之比为1:1.
(3)点E位于AB的中点时,能使DE∥平面AB1C1
证法一:设F是BB1的中点,连结DF、EF、DE.
则易证:平面DEF//平面AB1C1,从而
DE∥平面AB1C1
证法二:设G是AB1的中点,连结EG,则易证EGDC1.
所以DE// C1G,DE∥平面AB1C1
点评:题目中涉及到中点D,要得到的关系恰好是线面平行,因此考虑由中点构成的三角形中位线从而实现线面平行关系
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在四面体中,,且E、F分别是AB、BD的中点,

求证:(1)直线EF//面ACD
(2)面EFC⊥面BCD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知如图(1),正三角形ABC的边长为2a,CDAB边上的高,EF分别是ACBC边上的点,且满足,现将△ABC沿CD翻折成直二面角A-DC-B,如图(2).

(Ⅰ) 求二面角B-AC-D的大小;
(Ⅱ) 若异面直线ABDE所成角的余弦值为,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥中,平面平面,是正三角形,已知

(1) 设上的一点,求证:平面平面;
(2) 求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正四棱锥的所有棱长相等,EPC的中点,则异面直线BEPA所成角的余弦值是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个多面体的直观图和三视图如图所示,其中分别是的中点,上的一动点,主视图与俯视图都为正方形。

⑴求证:
⑵当时,在棱上确定一点,使得∥平面,并给出证明。
⑶求二面角的平面角余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,长方体ABCD-A1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点.直线A1E与GF所成角等于__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设直线和平面,下列四个命题中,正确的是(  )
A.若B.若
C.若D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,已知三棱柱ABC-A1B1C1,侧面BCC1B1丄底面ABC.

(I)若M、N分别是AB,A1C的中点,求证:MN//平面BCC1B1
(II)若三棱柱ABC-A1B1C1的各棱长均为2,侧棱BB1与底面 ABC所成的角为60°.问在线段A1C1上是否存在一点P,使得平面B1CP丄平面ACC1A1,若存在,求C1P与PA1的比值,若不存在,说明 理由.

查看答案和解析>>

同步练习册答案