精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知两点 动点满足线段的中垂线交线段.

(1)求点的轨迹的方程;

(2)过点的直线与轨迹相交于两点,设点直线的斜率分别为是否为定值?并证明你的结论.

【答案】(1) (2)答案见解析.

【解析】试题分析:1利用椭圆定义求出点的轨迹的方程;

2讨论直线的斜率当直线的斜率存在时,设直线的方程为联立方程得,利用根与系数关系表示,即可得到定值.

试题解析:

(Ⅰ)以题意可得: ,

所以点的轨迹是以为焦点,长轴长为的椭圆,

所以

所以轨迹的方程为.

(Ⅱ)①当直线的斜率不存在时,由,解得

.

②当直线的斜率存在时,设直线的方程为

代入整理化简,得

依题意,直线与轨迹必相交于两点,设

所以

综上得: 为定值2.(说明:若假设直线,按相应步骤给分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,椭圆的离心率为轴被曲线截得的线段长等于的长半轴长。

1)求的方程;

2)设轴的交点为M,过坐标原点O的直线相交于点A,B,直线MA,MB分别与相交与D,E.

证明:

MAB,MDE的面积分别是.问:是否存在直线,使得=?请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,已知CA=1,CB=2,∠ACB=60°.

(1)求||;

(2)已知点D是AB上一点,满足,点E是边CB上一点,满足

①当λ=时,求

②是否存在非零实数λ,使得?若存在,求出的λ值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列五个判断:

①某校高二一班和高二二班的人数分别是mn,某次测试数学平均分分别为ab,则这两个班的数学平均分为

②10名工人生产同一种零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有c>a>b

③设m,命题“若a>b,则”的逆否命题为假命题;

④命题p“方程表示椭圆”,命题q“的取值范围为1<<4”,则p是q的充要条件;

⑤线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱;

其中正确的个数有(   )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图像上存在点函数的图像上存在点关于原点对称,则的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018届河南省南阳市第一中学高三上学期第八次考试】2017514日至15日,一带一路国际合作高峰论坛在中国首都北京举行,会议期间,达成了多项国际合作协议.假设甲、乙两种品牌的同类产品出口某国家的市场销售量相等,该国质量检验部门为了解他们的使用寿命,现从这两种品牌的产品中分别随机抽取300个进行测试,结果统计如下图所示.

1)估计甲品牌产品寿命小于200小时的概率;

2)在抽取的这两种品牌产品中,抽取寿命超过300小时的产品3个,设随机变量表示抽取的产品是甲品牌的产品个数,求的分布列和数学期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20名学生某次数学考试成绩(单位:分)的频率分布直方图如下:

(1)求频率直方图中a的值;

(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;

(3)从成绩在[50,70)的学生中人选2人,求这2人的成绩都在[60,70)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大庆实验中学在高二年级举办线上数学知识竞赛,在已报名的400名学生中,根据文理学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[2030)[3040)[8090],并整理得到如下频率分布直方图:

1)估算一下本次参加考试的同学成绩的中位数和众数;

2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[4050)内的人数;

3)已知样本中有一半理科生的分数不小于70,且样本中分数不小于70的文理科生人数相等.试估计总体中理科生和文科生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小组共有五位同学,他们的身高(单位:米)以及体重指标(单位:千克/2

如下表所示:


A

B

C

D

E

身高

1.69

1.73

1.75

1.79

1.82

体重指标

19.2

25.1

18.5

23.3

20.9

(Ⅰ)从该小组身高低于的同学中任选人,求选到的人身高都在以下的概率

(Ⅱ)从该小组同学中任选人,求选到的人的身高都在以上且体重指标都在中的概率.

查看答案和解析>>

同步练习册答案