精英家教网 > 高中数学 > 题目详情

【题目】下列各组函数中,表示同一函数的是( )
A.
B.y=|1﹣x|和
C. 和y=x+1
D.y=x0和y=1

【答案】B
【解析】解:对于A,y= =|x|(x∈R),与y= =x(x∈R)的解析式不同,不是同一函数;

对于B,y=|1﹣x|的定义域为R,与y= =|x﹣1|的定义域相同,对应关系也相同,是同一函数;

对于C,y= =x+1(x≠1),与y=x+1(x∈R)的定义域不同,不是同一函数;

对于D,y=x0=1(x≠0),与y=1(x∈R)的定义域不同,不是同一函数.

故选:B.

【考点精析】本题主要考查了判断两个函数是否为同一函数的相关知识点,需要掌握只有定义域和对应法则二者完全相同的函数才是同一函数才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求证f(x)是R上的单调增函数;
(2)求函数f(x)的值域;
(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)>0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx﹣3在x=1处取得极值,且在(0,﹣3)点处的切线与直线2x+y=0平行.
(1)求f(x)的解析式;
(2)求函数g(x)=xf(x)+4x的单调递增区间及极值.
(3)求函数g(x)=xf(x)+4x在x∈[0,2]的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+ax2+x(a∈R).
(1)若函数f(x)在x=1处的切线平行于x轴,求实数a的值,并求此时函数f(x)的极值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +bx(其中a,b为常数)的图象经过(1,3)、(2,3)两点.
(I)求a,b的值,判断并证明函数f(x)的奇偶性;
(II)证明:函数f(x)在区间[ ,+∞)上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣3x+2=0},B={x|x2﹣ax+a﹣1=0},C={x|x2﹣mx+2=0}.若A∪B=A,A∩C=C,求实数a,m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的短轴长为2,离心率
(1)求椭圆C的方程;
(2)若斜率为k的直线过点M(2,0),且与椭圆C相交于A,B两点.试求k为何值时,三角形OAB是以O为直角顶点的直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式ax2+bx+c>0的解集为{x|﹣1<x<2},则关于x的不等式cx2+bx+a>0的解集是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是(
A.若p∨q为真命题,则p∧q为真命题
B.“a>0,b>0”是“ ≥2”的充分必要条件
C.命题“若x2﹣3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,则x2﹣3x+2≠0”
D.命题p:?x∈R,使得x2+x﹣1<0,则¬p:?x∈R,使得x2+x﹣1≥0

查看答案和解析>>

同步练习册答案