【题目】如图,一个水轮的半径为4m,水轮圆心O距离水面2m,已知水轮每分钟转动5圈,如果当水轮上点P从水中浮现时(图中点p0)开始计算时间.
(1)将点p距离水面的高度z(m)表示为时间t(s)的函数;
(2)点p第一次到达最高点大约需要多少时间?
【答案】(1) (2)点P第一次到达最高点大约需要4s.
【解析】试题分析:(1)令函数为,由题意可知函数最大值与最小值,由两最值可得振幅与,再由每分钟转过的角度可得周期,利用周期与的关系可得其值,再将起始位置时, 满足函数表达式代入可得值;(2)当函数取最值时,求出对应的值,取最小正值,即为所需要时间.
试题解析:(1)依题意可知z的最大值为6,最小为﹣2,
∴;
∵op每秒钟内所转过的角为,得z=4sin,
当t=0时,z=0,得sinφ=﹣,即φ=﹣,故所求的函数关系式为
z=4sin+2
(2)令z=4sin+2=6,得sin=1,
取,得t=4,
故点P第一次到达最高点大约需要4s.
科目:高中数学 来源: 题型:
【题目】一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:
(1)取出1球是红球或黑球的概率;
(2)取出1球是红球或黑球或白球的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中国某手机品牌公司生产某款手机的年固定成本为40万元,每生产1万部还需另投入16万元.设公司一年内共生产该款手机万部并全部销量完,每万部的销售收入为万元,且
(1)写出年利润万元关于年产量(万部)的函数解析式;
(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某服装商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:
(1) 算出线性回归方程; (a,b精确到十分位)
(2)气象部门预测下个月的平均气温约为3℃,据此估计,求该商场下个月毛衣的销售量.
(参考公式:)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)= (m>0,n>0).
(1) 当m=n=1时,求证:f(x)不是奇函数;
(2) 设f(x)是奇函数,求m与n的值;
(3) 在(2)的条件下,求不等式f(f(x))+f <0的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数据x1,x2,x3,…,xn是普通职工n(n≥3,n∈N*)个人的年收入,设这n个数据的中位数为x,平均数为y,方差为z,如果再加上世界首富的年收入xn+1,则这n+1个数据中,下列说法正确的是
A. 年收入平均数大大增大,中位数一定变大,方差可能不变
B. 年收入平均数大大增大,中位数可能不变,方差变大
C. 年收入平均数大大增大,中位数可能不变,方差也不变
D. 年收入平均数可能不变,中位数可能不变,方差可能不变
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=()x.
(Ⅰ)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值g(a);
(Ⅱ)在(Ⅰ)的条件下,是否存在实数m>n>3,使得g(x)的定义域为[n,m],值域为[n2,m2]?若存在,求出m、n的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4, ,AB=2CD=8.
(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(2)当M点位于线段PC什么位置时,PA∥平面MBD?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com