精英家教网 > 高中数学 > 题目详情
20.已知sinx+$\sqrt{3}$cosx=$\frac{8}{5}$,则sin(x+$\frac{π}{3}$)=$\frac{4}{5}$.

分析 推导出2sin(x+$\frac{π}{3}$)=$\frac{8}{5}$,由此能求出sin(x+$\frac{π}{3}$)的值.

解答 解:∵sinx+$\sqrt{3}$cosx=$\frac{8}{5}$,
∴2sin(x+$\frac{π}{3}$)=$\frac{8}{5}$,
∴sin(x+$\frac{π}{3}$)=$\frac{4}{5}$.
故答案为:$\frac{4}{5}$.

点评 本题考查正弦函数值的求法,是基础题,解题时要认真审题,注意三角函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.下列命题正确的是(  )
A.命题“$?{x_0}∈R,{x_0}^2+1>3{x_0}$”的否定是“$?{x_0}∈R,{x^2}+1>3x$”
B.“函数f(x)=cosax-sinax的最小正周期为 π”是“a=2”的必要不充分条件
C.x2+2x≥ax在x∈[1,2]时有解?(x2+2x)min≥(ax)min在x∈[1,2]时成立
D.“平面向量$\overrightarrow a$与$\overrightarrow b$的夹角是钝角”的充分必要条件是“$\overrightarrow a$•$\overrightarrow b$<0”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.定义在R上的函数f(x),其周期为4,且当x∈[-1,3]时,f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}}}&{x∈[-1,1]}\\{1-|x-2|}&{x∈(1,3]}\end{array}\right.$,
(1)画出函数在x∈[-1,3]的简图
(2)若函数g(x)=f(x)-kx-k恰有4个零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A、B、C所对的边分别为a、b、c.已知a=2acosAcosB-2bsin2A.
(1)求C;
(2)若△ABC的面积为$\frac{{15\sqrt{3}}}{4}$,周长为 15,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知三棱锥的三视图如图所示,其中俯视图为直角三角形,俯视图为等腰直角三角形,则此三棱锥的体积等于(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知正项等比数列{an}的前n项和为Sn,且a4=$\frac{1}{8}$,$\frac{{S}_{4}}{{S}_{2}}$=$\frac{5}{4}$,数列{bn}的前n项和为Tn,且Tn=n2+n.
(1)求{an},{bn}的通项公式;
(2)若数列{cn}满足(n+1)2nanbncn=1,求数列{an+cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知{an}是公差不为0的等差数列,a1=1,且a1,a3,a9成等比数列.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求证:数列{bn}的前n项和Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给出下列结论:
①已知函数f(x)是定义在R上的奇函数,若f(-1)=2,f(-3)=-1,则f(3)<f(-1);
②函数y=log${\;}_{\frac{1}{2}}$(x2-2x)的单调递增减区间是(-∞,0);
③已知函数f(x)是奇函数,当x≥0时,f(x)=x2,则当x<0时,f(x)=-x2
④若函数y=f(x)的图象与函数y=ex的图象关于直线y=x对称,则对任意实数x,y都有f(xy)=f(x)+f(y).
则正确结论的序号是①③④(请将所有正确结论的序号填在横线上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某学习小组20名学生一次数学考试成绩(单位:分)频率直方图如图所示,已知前三个矩形框垂直于横轴的高度成等差数列.
(1)求频率分布直方图中a的值;
(2)分别求出成绩落在[50,60)与[80,90)中的学生人数;
(3)从成绩在[50,60)与[80,90)中的学生中人选2人,求此2人的成绩相差20分以上的概率.

查看答案和解析>>

同步练习册答案