精英家教网 > 高中数学 > 题目详情
设f(x)是R上的奇函数,且f(-1)=0,当x>0时,(x2+1)f′(x)-2xf(x)<0,则不等式f(x)>0的解集为
 
分析:首先根据商函数求导法则,把 (x2+1)f'(x)-2xf(x)<0,化为[
f(x)
x2+1
]′<0;然后利用导函数的正负性,可判断函数y=
f(x)
x2+1
在(0,+∞)内单调递减;再由f(-1)=0,易得f(x)在(0,+∞)内的正负性;最后结合奇函数的图象特征,可得f(x)在(-∞,0)内的正负性.则f(x)>0的解集即可求得.
解答:解:因为当x>0时,有 (x2+1)f'(x)-2xf(x)<0恒成立,即[
f(x)
x2+1
]′<0恒成立,
所以y=
f(x)
x2+1
在(0,+∞)内单调递减.
因为f(-1)=0,
所以在(0,1)内恒有f(x)>0;在(1,+∞)内恒有f(x)<0.
又因为f(x)是定义在R上的奇函数,
所以在(-∞,-1)内恒有f(x)>0;在(-1,0)内恒有f(x)<0.
即不等式f(x)>0的解集为:(-∞,-1)∪(0,1).
故答案为:(-∞,-1)∪(0,1).
点评:本题主要考查函数求导法则及函数单调性与导数的关系,同时考查了奇偶函数的图象特征,熟练掌握导数的运算法则是解题的关键,考查运算能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、设f(x)是R上的奇函数,且f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于
-0.5

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是R上的奇函数,且对?x∈R都有f(x+2)=-f(x),当-1≤x≤1时,f(x)=x3
(1)求证:直线x=1是函数f(x)的图象的一条对称轴;
(2)当x=[1,5]时,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是R上的奇函数,且y=f(x)的图象关于直线x=
12
对称,则f(1)+f(2)+f(3)+f(4)+f(5)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是R上的奇函数,且当x∈(0,+∞)时,f(x)=x(1+x),则 f(x)在 (-∞,0)上的解析式
f(x)=x(1-x)
f(x)=x(1-x)

查看答案和解析>>

同步练习册答案