精英家教网 > 高中数学 > 题目详情

【题目】已知数列),与数列),记.

1)若,求的值;

2)求的表达式;

3)已知,且存在正整数,使得在中有4项为100,求的值,并指出哪4项为100.

【答案】1;(2;(3100.

【解析】

(1)直接求得关于的表达式再求解即可.

(2)先求得,再猜测的表达式利用数学归纳法求证即可.

(3)分别写出的值,判断这12项的中的4项和为100,再求出的值即可求出哪4项和为100.

(1)易得,,,,,

,解得.

(2)

.

猜测,用数学归纳法证明,

①当, 成立.

②假设当,时等式成立,,则当,

也成立.

根据①,②可以判定:当,

(3)根据(2).

,

,

,

,

,

,

因为是奇数,,,均为负数.故这些数均不可能取到100,

故当,,,,,100.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程为,曲线的参数方程为:为参数),为直线上距离为的两动点,点为曲线上的动点且不在直线上.

1)求曲线的普通方程及直线的直角坐标方程.

2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,动点满足直线与直线的斜率之积为,设点的轨迹为曲线.

1)求曲线的方程;

2)若过点的直线与曲线交于两点,过点且与直线垂直的直线与相交于点,求的最小值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)求曲线与曲线两交点所在直线的极坐标方程;

(2)若直线的极坐标方程为,直线轴的交点为,与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1时,若,求的取值范围

2若定义在上奇函数满足,且当时,

上的反函数

3对于(2)中的若关于的不等式上恒成立,求实

的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,若过且倾斜角为的直线交两点,满足.

(1)求抛物线的方程;

(2)若上动点,轴上,圆内切于,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若为单调函数,求a的取值范围;

2)若函数仅一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆在圆外部且与圆相切,同时还在圆内部与圆相切.

1)求动圆圆心的轨迹方程;

2)记(1)中求出的轨迹为轴的两个交点分别为上异于的动点,又直线轴交于点,直线分别交直线两点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在某商业区周边有 两条公路,在点处交汇,该商业区为圆心角,半径3的扇形,现规划在该商业区外修建一条公路,与分别交于,要求与扇形弧相切,切点不在上.

(1)设试用表示新建公路的长度,求出满足的关系式,并写出的范围;

(2)设,试用表示新建公路的长度,并且确定的位置,使得新建公路的长度最短.

查看答案和解析>>

同步练习册答案