精英家教网 > 高中数学 > 题目详情
2.设函数m(x)=$\left\{\begin{array}{l}{{x}^{2},{x}^{2}≤{2}^{x}}\\{{2}^{x},{2}^{x}<{x}^{2}}\end{array}\right.$,则m(x)的最小值为(  )
A.0B.$\frac{1}{2}$C.1D.2

分析 由题意可得m(x)为函数y=x2和y=2x的较小者,作图可得.

解答 解:由题意可得m(x)=$\left\{\begin{array}{l}{{x}^{2},{x}^{2}≤{2}^{x}}\\{{2}^{x},{2}^{x}<{x}^{2}}\end{array}\right.$为函数y=x2和y=2x的较小者,
作图(图中红色线)可知,m(x)的最小值为0,
故选:A

点评 本题考查函数的最值求解,作图是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的首项a1=1,?n∈N*,an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$.
(1)求数列{an}的通项公式;
(2)求数列{$\frac{{a}_{n}}{n}$}的前n项和Sn
(3)求证:?n∈N*,a12+a22+a32+…+an2<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知在△ABC中,sinA+cosA=$\frac{{\sqrt{5}}}{5}$
(Ⅰ)求sinA-cosA的值;
(Ⅱ)求$\frac{{5{{sin}^2}A+sin(A-\frac{π}{2})cos(A+\frac{3π}{2})-5{{cos}^2}A}}{sinAcosA}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=ln(1+x)-ln(1-x).
(1)求函数的定义域;
(2)判断函数的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.过点(2,-1)引直线与抛物线x2=4y只有一个公共点,这样的直线共有3条.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知cos(π+x)=$\frac{4}{5}$,x∈(π,2π),则cos($\frac{π}{2}-x$)=(  )
A.-$\frac{3}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}-\overrightarrow{b}$|,<$\overrightarrow{c}-\overrightarrow{a},\overrightarrow{c}-\overrightarrow{b}$>=$\frac{2π}{3}$,则$\frac{|\overrightarrow{c}|}{|\overrightarrow{a}|}$的最大值为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列有关命题的说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B.命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R 均有x2+x+1<0”
C.在△ABC中,“A>B”是“sinA>sinB”的充要条件
D.“x≠2或y≠1”是“x+y≠3”既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.为了解某校学生喜爱打篮球是否与性别有关,采用随机抽样方法抽取了50名学生进行问卷调查,得到如下的列联表:
喜爱打篮球不喜爱打篮球合计
男生5
女生10
合计50
已知在这50名学生中随机抽取1人,抽到喜爱打篮球的学生的概率为$\frac{3}{5}$.
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(Ⅲ)记不喜爱打篮球的5名男生分别为A、B、C、D、E,这5名男生喜爱打乒乓球,
如果从他们当中任选2人作为一对组合参加乒乓球男子双打比赛,求A、B中恰好有1人被选中的概率.
下面的临界值表供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案