精英家教网 > 高中数学 > 题目详情

【题目】如图,平面四边形为直角梯形,,将绕着翻折到.

1上一点,且,当平面时,求实数的值;

2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.

【答案】1;(2.

【解析】

1)连接于点,连接,利用线面平行的性质定理可推导出,然后利用平行线分线段成比例定理可求得的值;

2)取中点,连接,过点,则,作,连接,推导出,可得出为平面与平面所成的锐二面角,由此计算出,并证明出平面,可得出直线与平面所成的角为,进而可求得与平面所成角的正弦值.

1)连接于点,连接

平面平面,平面平面

在梯形中,,则

,所以,

2)取中点,连接,过点,则,作,连接.

的中点,且

所以,四边形为平行四边形,由于

的中点,所以,,同理

平面

为面与面所成的锐二面角,

,则

平面平面

与底面所成的角,

.

中,.

因此,与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.

①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分;

②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;

③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关;

④乙同学连续九次测验成绩每一次均有明显进步.

其中正确的个数为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年全国数学奥赛试行改革:在高二一年中举行5次全区竞赛,学生如果其中2次成绩达全区前20名即可进入省队培训,不用参加其余的竞赛,而每个学生最多也只能参加5次竞赛.规定:若前4次竞赛成绩都没有达全区前20名,则第5次不能参加竞赛.假设某学生每次成绩达全区前20名的概率都是,每次竞赛成绩达全区前20名与否互相独立.

(1)求该学生进入省队的概率.

(2)如果该学生进入省队或参加完5次竞赛就结束,记该学生参加竞赛的次数为,求的分布列及的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知xy满足约束条件,当时,的最小值是________.的最大值是-1,则________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;

②设有一个线性回归方程,变量x增加1个单位时,y平均增加5个单位;

③设具有相关关系的两个变量x,y的相关系数为r,则|r|越接近于0,x和y之间的线性相关程度越强;

④在一个2×2列联表中,由计算得K2的值,则K2的值越大,判断两个变量间有关联的把握就越大.

以上错误结论的个数为(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服装店对过去100天其实体店和网店的销售量(单位:件)进行了统计,制成频率分布直方图如下:

1)若将上述频率视为概率,已知该服装店过去100天的销售中,实体店和网店销售量都不低于50件的概率为0.4,求过去100天的销售中,实体店和网店至少有一边销售量不低于50件的天数;

2)若将上述频率视为概率,已知该服装店实体店每天的人工成本为500元,门市成本为1200元,每售出一件利润为50元,求该门市一天获利不低于800元的概率;

3)根据销售量的频率分布直方图,求该服装店网店销售量中位数的估计值(精确到0.01).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知若椭圆)交轴于两点,点是椭圆上异于的任意一点,直线分别交轴于点,则为定值.

1)若将双曲线与椭圆类比,试写出类比得到的命题;

2)判定(1)类比得到命题的真假,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线与直线垂直.

(1)求函数的极值;

(2)若上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,且圆心到直线的距离比.

1)求动圆圆心的轨迹的方程;

2)已知轨迹与直线相交于两点.试问,在轴上是否存在一个定点使得是一个定值?如果存在,求出定点的坐标和这个定值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案