精英家教网 > 高中数学 > 题目详情
10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1(-3,0),F2(3,0),直线y=kx与椭圆交于A、B两点.
(Ⅰ)若三角形AF1F2的周长为4$\sqrt{3}$+6,求椭圆的标准方程;
(Ⅱ)若|k|>$\frac{\sqrt{2}}{4}$,且以AB为直径的圆过椭圆的右焦点,求椭圆离心率e的取值范围.

分析 (Ⅰ)由题意得$\left\{\begin{array}{l}{c=3}\\{2a+2c=6+4\sqrt{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解出即可得出.
(Ⅱ)由$\left\{\begin{array}{l}{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\\{y=kx}\end{array}\right.$,化为(b2+a2k2)x2-a2b2=0.设A(x1,y1),B(x2,y2).由AF2⊥BF2,可得$\overrightarrow{{F}_{2}A}$•$\overrightarrow{{F}_{2}B}$=0,再利用根与系数的关系化简整理即可得出.

解答 解:(Ⅰ)由题意得$\left\{\begin{array}{l}{c=3}\\{2a+2c=6+4\sqrt{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a2=12,b2=3.
∴椭圆的方程为$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{3}=1$.
(Ⅱ)由$\left\{\begin{array}{l}{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\\{y=kx}\end{array}\right.$,化为(b2+a2k2)x2-a2b2=0.
设A(x1,y1),B(x2,y2).
∴x1+x2=0,x1x2=$\frac{-{a}^{2}{b}^{2}}{{b}^{2}+{a}^{2}{k}^{2}}$,
易知,AF2⊥BF2
∵$\overrightarrow{{F}_{2}A}$=(x1-3,y1),$\overrightarrow{{F}_{2}B}$=(x2-3,y2),
∴$\overrightarrow{{F}_{2}A}$•$\overrightarrow{{F}_{2}B}$=(x1-3)(x2-3)+y1y2
=(1+k2)x1x2-3(x1+x2)+9=(1+k2)x1x2+9=0.
∴$\frac{-{a}^{2}({a}^{2}-9)(1+{k}^{2})}{({a}^{2}-9)+{a}^{2}{k}^{2}}$+9=0,
将其整理为k2=$\frac{{a}^{4}-18{a}^{2}+81}{-{a}^{4}+18{a}^{2}}$=-1-$\frac{81}{{a}^{4}-18{a}^{2}}$.
∵|k|>$\frac{\sqrt{2}}{4}$,∴12<a2<18,
解得$2\sqrt{3}<a<3\sqrt{2}$,
∴离心率$\frac{\sqrt{2}}{2}<e<\frac{\sqrt{3}}{2}$.

点评 本题考查了椭圆的标准方程及其性质、圆的性质、相互垂直的直线斜率之间的关系、不等式的性质,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+\frac{3}{4}(x≤0)}\\{lnx+a(x>0)}\end{array}\right.$的图象在A,B两点处的切线重合,则实数a的取值范围为(-∞,ln2+$\frac{11}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足an+1=a${\;}_{n}^{2}$-nan+1,且a1=2.
(1)计算a2,a3,a4的值,由此猜想数列{an}的通项公式,并用数学归纳法证明;
(2)求证:2nn≤a${\;}_{n}^{n}$<3nn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设a>0,且a≠1,已知函数f(x)=loga$\frac{1-bx}{x-1}$是奇函数
(Ⅰ)求实数b的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)当x∈(1,a-2)时,函数f(x)的值域为(1,+∞),求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数$f(x)=x-\frac{16}{x}$,则不等式xf(x)≤0的解集为(  )
A.[-4,0)∪(0,4]B.(-4,4)C.[-4,4]D.(-∞,4)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=2x-5x则函数f(x)的零点所在区间可以为(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知是椭圆$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{16}$=1的两个焦点,P是椭圆上的一点,若∠F1PF2=$\frac{π}{3}$,则△F1PF2面积为$\frac{16\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数$f(x)=\left\{\begin{array}{l}-x+6,x≤2\\ 2+{log_a}x,x>2\end{array}\right.$(a>0,且a≠1)的值域是[4,+∞),则实数a的取值范围是(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若点P是两条异面直线a,b外一点,则过P且与a,b都平行的平面个数是(  )个.
A.0个B.1个C.0或1个D.无数个

查看答案和解析>>

同步练习册答案