由坐标原点O向函数y=x3-3x2的图象W引切线l1,切点为P1(x1,y1)(P1,O不重合),再由点P1引W的切线l2,切点为P2(x2,y2)(P1,P2不重合),…,如此继续下去得到点列{Pn(xn,yn)}.
(Ⅰ)求x1的值;
(Ⅱ)求xn与xn+1满足的关系式;
(Ⅲ)求数列{xn}的通项公式.
分析:(Ⅰ)由y=x
3-3x
2,知y′=3x
2-6x.再由切线l
1的方程为y-(x
13-3x
12)=(3x
12-6x
1)(x-x
1)过点O(0,0),知-(x
13-3x
12)=-x
1(3x
12-6x
1),由此能求出x
1的值.
(Ⅱ)由过点P
n+1(x
n+1,y
n+1)的切线l
n+1的方程为y-(x
n+13-3x
n+12)=(3x
n+12-6x
n+1)(x-x
n+1)过点P
n(x
n,y
n),知(x
n-x
n+1)
2(x
n+2x
n+1-3)=0,由此能求出x
n与x
n+1满足的关系式.
(Ⅲ)由
xn+1=-xn+,知
xn+1-1=-(xn-1),
∴{x
n-1}是以
x1-1=为首项,
-为公比的等比数列,由此能求出数列{x
n}的通项公式.
解答:解:(Ⅰ)∵y=x
3-3x
2,∴y′=3x
2-6x.
∵过点P
1(x
1,y
1)的切线l
1的方程为y-(x
13-3x
12)=(3x
12-6x
1)(x-x
1),
又l
1过点O(0,0),
∴-(x
13-3x
12)=-x
1(3x
12-6x
1),
∴2x
13=3x
12,∴
x1=或x
1=0.∵P
1与O不重合,
∴
x1=.(5分)
(Ⅱ)∵过点P
n+1(x
n+1,y
n+1)的切线l
n+1的方程为y-(x
n+13-3x
n+12)=(3x
n+12-6x
n+1)(x-x
n+1),
又l
n+1过点P
n(x
n,y
n),
∴x
n3-3x
n2-(x
n+13-3x
n+12)=(3x
n+12-6x
n+1)(x
n-x
n+1),
整理得(x
n-x
n+1)
2(x
n+2x
n+1-3)=0,
由已知得x
n≠x
n+1,
∴x
n+2x
n+1=3.(10分)
(Ⅲ)∵
xn+1=-xn+,
∴
xn+1-1=-(xn-1),
∴{x
n-1}是以
x1-1=为首项,
-为公比的等比数列,
∴
xn-1=(-)n-1,
即
xn=1-(-)n.(14分)
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.