精英家教网 > 高中数学 > 题目详情
已知数列{an}前n项和为Sn,首项为a1,且
1
2
anSn
成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列满足bn=(log2a2n+1)×(log2a2n+3),求证:
1
b1
+
1
b2
+
1
b3
+…+
1
bn
1
2
分析:(Ⅰ)由题意可得2an=Sn+
1
2
,令n=1可求a1,n≥2时,Sn=2an-
1
2
Sn-1=2an-1-
1
2
,两式相减可得递推式,由递推式可判断该数列为等比数列,从而可得an
(Ⅱ)表示出bn,进而可得
1
bn
,并拆项,利用裂项相消法可求和,由和可得结论;
解答:解:(Ⅰ)∵
1
2
anSn
成等差数列,∴2an=Sn+
1
2

当n=1时,2a1=a1+
1
2
,解得a1=
1
2

当n≥2时,Sn=2an-
1
2
Sn-1=2an-1-
1
2

两式相减得:an=Sn-Sn-1=2an-2an-1,∴
an
an-1
=2

所以数列{an}是首项为
1
2
,公比为2的等比数列,an=
1
2
×2n-1=2n-2

(Ⅱ)bn=(log2a2n+1)×(log2a2n+3
=log222n+1-2×log222n+3-2
=(2n-1)(2n+1),
1
bn
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

1
b1
+
1
b2
+
1
b3
+…+
1
bn

=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]

=
1
2
(1-
1
2n+1
)
1
2
点评:本题考查数列与不等式的综合,考查裂项相消法对数列求和,考查等比数列的通项公式,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}前 n项和为Sn,且Sn=n2
(1)求{an}的通项公式    
(2)设 bn=
1anan+1
,求数列{bn}的前 n项 和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项和Sn和通项an满足Sn=-
1
2
(an-1)

(1)求数列{an}的通项公式; 
(2)试证明Sn
1
2

(3)设函数f(x)=log
1
3
x
,bn=f(a1)+f(a2)+…+f(an),求
1
b1
+
1
b2
+…+
1
b99
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项和Sn=2n-1,则数列{an}的奇数项的前n项的和是
4n-1
3
4n-1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项和Sn=2an+2n
(Ⅰ)证明数列{
an
2n-1
}
是等差数列,并求{an}的通项公式;
(Ⅱ)若bn=
(n-2011)an
n+1
,求数列{bn}是否存在最大值项,若存在,说明是第几项,若不存在,请说明理由;
(Ⅲ)设Tn=|S1|+|S2|+|S3|+…+|Sn|,试比较
Tn+Sn
2
2-n
1+n
an
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项和Sn=n2+2n,设bn=
1anan+1

(1)试求an
(2)求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案