【题目】如图,在多面体ABCDEF中,四边形ABCD为平行四边形,平面ADE⊥平面CDEF,∠ADE=60°,DE∥CF,CD⊥DE,AD=2,DE=DC=3,CF=4,点G是棱CF上的动点.
(Ⅰ)当CG=3时,求证EG∥平面ABF;
(Ⅱ)求直线BE与平面ABCD所成角的正弦值;
(Ⅲ)若二面角G﹣AE﹣D所成角的余弦值为,求线段CG的长.
【答案】(Ⅰ)证明见详解;(Ⅱ);(Ⅲ)
【解析】
(1)通过证明直线AB∥EG,从而由线线平行推证线面平行;
(2)过A作DE垂线AO,以为坐标原点,建立空间直角坐标系,求出平面的法向量以及直线的方向向量,从而求解线面角的正弦值;
(3)由(2)中所建的直角坐标系,根据二面角G﹣AE﹣D所成角的余弦值,求得G点的坐标,即可求得CG的长度.
(Ⅰ)证明:由已知得CG∥DE且CG=DE,
故四边形CDEG为平行四边形,
∴CD∥EG,
∵四边形ABCD为平行四边形,
∴CD∥AB,∴AB∥EG,
又EG平面ABF,AB平面ABF,
∴EG∥平面ABF.
(Ⅱ)过点A作AO⊥DE交DE于点O,过点O作OK∥CD交CF于点K
由(1)知平面ADE⊥平面CDEF,平面ADE∩平面CDEF=DE,AO平面ADE,
∴AO⊥平面CDEF,∵CD⊥DE,∴OK⊥DE,以O为原点建立如图的空间直角坐标系,
则D(0,﹣1,0),E(0,2,0),C(3,﹣1,0),
F(3,3,0),,D(0,﹣1,0),
∴
设平面ABCD的法向量为,
即,令z=﹣1,则,
,
∴直线BE与平面ABCD所成角的正弦值为,
(Ⅲ)由题意得,G(3,4λ﹣1,0).
∴,
设平面AEG的法向量为,即,
令y=3,则,x=3﹣4λ,
∴,
容易得平面AED的法向量为,
故可得,
解得,
∴,∴|CG|=λ|CF|=4λ,
∵|CG|≤4,
∴.
科目:高中数学 来源: 题型:
【题目】经过多年的努力,炎陵黄桃在国内乃至国际上逐渐打开了销路,成为炎陵部分农民脱贫致富的好产品.为了更好地销售,现从某村的黄桃树上随机摘下了100个黄桃进行测重,其质量分布在区间内(单位:克),统计质量的数据作出其频率分布直方图如图所示:
(1)按分层抽样的方法从质量落在,的黄桃中随机抽取5个,再从这5个黄桃中随机抽2个,求这2个黄桃质量至少有一个不小于400克的概率;
(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的黄桃树上大约还有100000个黄桃待出售,某电商提出两种收购方案:
A.所有黄桃均以20元/千克收购;
B.低于350克的黄桃以5元/个收购,高于或等于350克的以9元/个收购.
请你通过计算为该村选择收益最好的方案.
(参考数据:)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.
(1)证明:BE⊥平面EB1C1;
(2)若AE=A1E,求二面角B–EC–C1的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0),四点P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个焦点与抛物线的焦点重合,且椭圆的离心率为.
(1)求椭圆的标准方程;
(2)直线交椭圆于、两点,线段的中点为,直线是线段的垂直平分线,求证:直线过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的方程为,其焦点为,为过焦点的抛物线的弦,过分别作抛物线的切线,,设,相交于点.
(1)求的值;
(2)如果圆的方程为,且点在圆内部,设直线与相交于,两点,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com