£¨2008•ÄÏ»ãÇø¶þÄ££©ÊýÁÐ{an}¸÷Ïî¾ùΪÕýÊý£¬SnΪÆäÇ°nÏîµÄºÍ£®¶ÔÓÚn¡ÊN*£¬×ÜÓÐan£¬Sn£¬an2³ÉµÈ²îÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏîan£»
£¨2£©ÉèÊýÁÐ{
1
an
}
µÄÇ°nÏîºÍΪTn£¬ÊýÁÐ{Tn}µÄÇ°nÏîºÍΪRn£¬ÇóÖ¤£ºµ±n¡Ý2£¬n¡ÊNʱ£¬Rn-1=n£¨Tn-1£©£»
£¨3£©Èôº¯Êýf(x)=
1
(p-1)•3qx+1
µÄ¶¨ÒåÓòΪRn£¬²¢ÇÒ
lim
n¡ú¡Þ
f(an)=0(n¡ÊN*)
£¬ÇóÖ¤p+q£¾1£®
·ÖÎö£º£¨1£©Ö÷ÒªÀûÓõȲîÖÐÏîµÃ³öSnÓëanµÄ¹Øϵʽ£¬ÔÚÀûÓà an =
S1            n=1
Sn-Sn-1    n¡Ý2
¿ÉÇó³öan£®
£¨2£©¾ÍÊÇÒªÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£¬ÏÈÑéÖ¤£ºn=2ʱµÈʽ³ÉÁ¢£¬ÔÙ¼ÙÉè n=kʱµÈʽ³ÉÁ¢£¬ÍÆn=k+1ʱ³ÉÁ¢£¬ÆäÖÐÓÐÒªÀûÓúüÙÉèÌõ¼þºÍRk=Rk-1+Tk¾Í¿ÉÖ¤³ö£®
£¨3£©ÏÈ˵Ã÷£ºq¡Ù0£®Èç¹ûq=0£¬Ôòf(x)=
1
p
£¬
lim
n¡ú¡Þ
f(an)²»ÊÇ0
£¬¡àq¡Ù0£»ÔÙ¸ù¾Ý(p-1)•3qx+1¡Ù0ºã³ÉÁ¢£®¼´p-1¡Ù-(
1
3q
)x
ºã³ÉÁ¢£®ÓÉÓÚq¡Ù0ʱ£¬-(
1
3q
)x
µÄÖµÓòΪ£¨-¡Þ£¬0£©£¬½áºÏÌõ¼þµÃ³ö3q£¾1´Ó¶øµÃ³öp+q£¾1£®
½â´ð£º½â£º£¨1£©ÓÉÒÑÖªn¡ÊN*ʱ£¬2Sn=an+an2×ܳÉÁ¢£®¡à2Sn-1=an-1+an-12£¨n¡Ý2£©£¬
Á½Ê½×÷²î£¬µÃ2an=an+an2-an-1-an-12£¬¡àan+an-1=£¨an+an-1£©£¨an-an-1£©£¬¡ßan¡¢an-1¾ùΪÕýÊý£®¡àan-an-1=1£¨n¡Ý2£©£®¡à{an}Êǹ«²îΪ1µÄµÈ²îÊýÁУ®
ÓÖn=1ʱ£¬2S1=2a1=a1+a12£¬µÃa1=1£¬¹Êan=n£®¡­£¨4·Ö£©
£¨2£©ÏÂÃæÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º
¢Ùµ±n=2ʱ£¬R1=T1=
1
a1
=1£¬2(T2-1)=2(
1
a1
+
1
a2
-1)=1
£®¡àn=2ʱ£¬µÈʽ³ÉÁ¢
¢Ú¼ÙÉèµ±n=k£¨k¡Ý2£©Ê±£¬
Rk=Rk-1+Tk=k(Tk-1)+Tk=(k+1)Tk-k=(k+1)(Tk+1-
1
ak+1
)-k
=(k+1)(Tk+1-
1
k+1
)-k=(k+1)(Tk+1-1+1-
1
k+1
)-k=(k+1)(Tk+1-1).
µ±n=k+1ʱ£¬µÈʽҲ³ÉÁ¢.

×ۺϢٺ͢ڣ¬¿ÉÖªËùÒªÖ¤Ã÷µÄµÈʽ³ÉÁ¢£®¡­£¨10·Ö£©
£¨3£©Èç¹ûq=0£¬Ôòf(x)=
1
p
£¬
lim
n¡ú¡Þ
f(an)²»ÊÇ0
£¬¡àq¡Ù0£¬¡ßf£¨x£©¶¨ÒåÓòΪR£¬
¡à(p-1)•3qx+1¡Ù0ºã³ÉÁ¢£®¼´p-1¡Ù-(
1
3q
)x
ºã³ÉÁ¢£®ÓÉÓÚq¡Ù0ʱ£¬-(
1
3q
)x
µÄÖµÓòΪ£¨-¡Þ£¬0£©£¬
¡àp-1¡Ý0£¬ÓÖµ±p=1ʱ£¬f£¨x£©=1.
lim
n¡ú¡Þ
f(an)¡Ù0
£¬
¡àp£¾1£®
¡ß
lim
n¡ú¡Þ
f(an)
=
lim
n¡ú¡Þ
1
(p-1)•3qn+1
=
 
10£¼3q£¼1
1
p
3q=1
£¬£¬
left
0&3q
£¾
1

¡à3q£¾1£¬¡àq£¾0£¬¹Êp+q£¾1¡­16·Ö
µãÆÀ£º±¾ÌâµÄµÚ1ÎʱȽϼòµ¥£¬Ö÷Òª¿¼²éÁË an =
S1            n=1
Sn-Sn-1    n¡Ý2
Õâ¸ö֪ʶµã£®µÚ2ÎÊÖ÷Òª¿¼²éÁËÊýѧ¹éÄÉ·¨Ö¤Ã÷£¬¹Ø¼üÔÚÓÚ n=k+1ʱµÄÍƵ¼¹ý³ÌÒªÀûÓúüÙÉèÌõ¼þºÍÌâµÄÌõ¼þ£¬ÔËËãµÄ¼¼ÇÉÐÔ½ÏÇ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2008•ÄÏ»ãÇø¶þÄ££©Ò»Áлð³µ×ÔA³ÇÊ»ÍùB³Ç£¬ÑØ;ÓÐn¸ö³µÕ¾£¨°üÀ¨ÆðµãÕ¾AºÍÖÕµãÕ¾B£©£¬³µÉÏÓÐÒ»½ÚÓÊÕþ³µÏᣬÿͣ¿¿Ò»Õ¾±ãҪжÏÂÇ°Ãæ¸÷Õ¾·¢Íù¸ÃÕ¾µÄÓÊ´ü¸÷Ò»¸ö£¬Í¬Ê±ÓÖҪװÉϸÃÕ¾·¢ÍùºóÃæ¸÷Õ¾µÄÓÊ´ü¸÷Ò»¸ö£¬ÊÔÇó£º
£¨1£©Áгµ´ÓµÚkÕ¾³ö·¢Ê±£¬ÓÊÕþ³µÏáÄÚ¹²ÓÐÓÊ´üÊýÊǶàÉÙ¸ö£¿
£¨2£©µÚ¼¸Õ¾µÄÓÊ´üÊý×î¶à£¿×î¶àÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2008•ÄÏ»ãÇø¶þÄ££©¹ý¶¨µã£¨1£¬2£©×÷Á½Ö±ÏßÓëÔ²x2+y2+kx+2y+k2-15=0ÏàÇУ¬ÔòkµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2008•ÄÏ»ãÇø¶þÄ££©ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄÇ°nÏîºÍSn=2n-1£¬Ôòa12+a22+¡­an2=
1
3
(4n-1)
1
3
(4n-1)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2008•ÄÏ»ãÇø¶þÄ££©£¨Àí£© ÒÑÖª£¨1+x£©n=a0+a1x+a2x2+¡­+anxn£¬Èôa0+a1+a2+¡­+an=16£¬Ôò×ÔÈ»Êýn=
4
4
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2008•ÄÏ»ãÇø¶þÄ££©£¨ÎÄ£© ÒÑÖª¼¯ºÏM={a£¬0}£¬N={x|2x2-5x£¼0£¬x¡ÊZ}£¬ÈôM¡ÉN¡Ù∅£¬Ôòa=
1»ò2
1»ò2
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸