精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中a,

(1),,求函数的零点;

(2),解关于x的不等式;

(3)如果函数的图象恒在直线的上方,证明:

【答案】(1) ;(2)当时,解集为,当时解集为,当时,解集为;(3)证明见解析.

【解析】

(1)将,代入函数得 ,,令,解方程即可求得函数的零点;

(2)将代入函数得 ,令解得,分三种情况讨论的解集即可.

(3)根据函数的图象恒在直线的上方,得对任意的恒成立,即对任意的恒成立, 则函数图象与轴无交点,,即,又因为,所以,.

解: (1)因为函数,

,时,

,则,解得.

所以函数的零点为;

(2)当时, ,

解得,

①当时, 的解集为

②当时, 的解集为,

③当时, 的解集为.

(3)如果函数的图象恒在直线的上方,

对任意的恒成立,

对任意的恒成立

,即

又因为,所以,.

所以函数的图象恒在直线的上方, 成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2018年8月8日是我国第十个全民健身日,其主题是:新时代全民健身动起来。某市为了解全民健身情况,随机从某小区居民中抽取了40人,将他们的年龄分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图。

(1)试求这40人年龄的平均数、中位数的估计值;

(2)(i)若从样本中年龄在[50,70)的居民中任取2人赠送健身卡,求这2人中至少有1人年龄不低于60岁的概率;

(ⅱ)已知该小区年龄在[10,80]内的总人数为2000,若18岁以上(含18岁)为成年人,试估计该小区年龄不超过80岁的成年人人数。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若对任意的,都存在,使得,则实数的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】信息科技的进步和互联网商业模式的兴起,全方位地改变了大家金融消费的习惯和金融交易模式,现在银行的大部分业务都可以通过智能终端设备完成,多家银行职员人数在悄然减少.某银行现有职员320人,平均每人每年可创利20万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.2万元,但银行需付下岗职员每人每年6万元的生活费,并且该银行正常运转所需人数不得小于现有职员的,为使裁员后获得的经济效益最大,该银行应裁员多少人?此时银行所获得的最大经济效益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《数书九章》是中国南宋时期杰出数学家秦九韶的著作,其中在卷五“三斜求积”中提出了已知三角形三边,求面积的公式,这与古希腊的海伦公式完全等价,其求法是“以小斜冥并大斜冥减中斜冥,余半之,自乘于上,以小斜冥乘大斜冥减上,余四约之,为实.一为从隅,开平方得积”若把以上这段文字写出公式,即若,则

(1)已知的三边,且,求证:的面积

(2)若,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(),曲线在点处的切线方程为.

(1)求实数的值,并求的单调区间;

(2)试比较的大小,并说明理由;

(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥的顶点为,底面圆心为,半径为

(1)设圆锥的母线长为,求圆锥的体积;

(2)设是底面半径,且为线段的中点,如图.求异面直线所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AOB是一块半径为r的扇形空地,.某单位计划在空地上修建一个矩形的活动场地OCDE及一矩形停车场EFGH,剩余的地方进行绿化.若,设

(Ⅰ)记活动场地与停车场占地总面积为,求的表达式;

(Ⅱ)当为何值时,可使活动场地与停车场占地总面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,设点,直线:,点在直线上移动,是线段轴的交点,分别作直线,使.

(1)求动点的轨迹的方程;

(2)已知⊙,过抛物线上一点作两条直线与⊙相切于两点,若直线轴上的截距为,求的最小值.

查看答案和解析>>

同步练习册答案