【题目】已知在上的函数满足如下条件:①函数的图象关于轴对称;②对于任意,;③当时,;④函数,,若过点的直线与函数的图象在上恰有8个交点,则直线斜率的取值范围是( )
A. B. C. D.
【答案】A
【解析】
根据条件分别判断函数的周期性,奇偶性以及函数在一个周期上的图象,利用函数与图象之间的关系,利用数形结合进行求解即可.
∵函数f(x)的图象关于y轴对称,
∴函数f(x)是偶函数,
由f(2+x)﹣f(2﹣x)=0得f(2+x)=f(2﹣x)=f(x﹣2),
即f(x+4)=f(x),即函数f(x)是周期为4的周期函数,
若x∈[﹣2,0],则x∈[0,2],
∵当x∈[0,2]时,f(x)=x,
∴当﹣x∈[0,2]时,f(﹣x)=﹣x,
∵函数f(x)是偶函数,
∴f(﹣x)=﹣x=f(x),
即f(x)=﹣x,x∈[﹣2,0],
则函数f(x)在一个周期[﹣2,2]上的表达式为f(x)=,
∵f(n)(x)=f(2n﹣1x),n∈N*,
∴数f(4)(x)=f(23x)=f(8x),n∈N*,
故f(4)(x)的周期为,其图象可由f(x)的图象压缩为原来的得到,
作出f(4)(x)的图象如图:
易知过M(﹣1,0)的斜率存在,
设过点(﹣1,0)的直线l的方程为y=k(x+1),设h(x)=k(x+1),
则要使f(4)(x)的图象在[0,2]上恰有8个交点,
则0<k<kMA,
∵A(,0),
∴kMA==,
故0<k<,
故选:A.
科目:高中数学 来源: 题型:
【题目】某公司的班车在8:00准时发车,小田与小方均在7:40至8:00之间到达发车点乘坐班车,且到达发车点的时刻是随机的,则小田比小方至少早5分钟到达发车点的概率为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线的方程为.
(1)若在两坐标轴上的截距相等,求的方程;
(2)若不经过第二象限,求实数的取值范围;
(3)若与轴正半轴的交点为,与轴负半轴的交点为,求(为坐标原点)面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面四个关于圆锥曲线的命题中,其中真命题为( )
A.设A、B为两个定点,K为非零常数,若,则动点P的轨迹是双曲线
B.方程的两根可分别作为椭圆和双曲线的离心率
C.双曲线与椭圆有相同的焦点
D.已知抛物线,以过焦点的一条弦AB为直径作圆,则此圆与准线相切
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
2018年2月22日上午,山东省省委、省政府在济南召开山东省全面展开新旧动能转换重大工程动员大会,会议动员各方力量,迅速全面展开新旧动能转换重大工程.某企业响应号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取了200件产品作为样本,检测一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.图1是设备改造前的样本的频率分布直方图,表1是设备改造后的样本的频数分布表.
表1:设备改造后样本的频数分布表
质量指标值 | ||||||
频数 | 4 | 36 | 96 | 28 | 32 | 4 |
(1)完成下面的列联表,并判断是否有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关;
设备改造前 | 设备改造后 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
(2)根据图1和表1提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;
(3)根据市场调查,设备改造后,每生产一件合格品企业可获利180元,一件不合格品亏损 100元,用频率估计概率,则生产1000件产品企业大约能获利多少元?
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC底面BCDE,BC=2,CD=,AB=AC
(1)证明.
(2)设侧面ABC为等边三角形,求二面角C-AD-E的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,射线OA、OB分别与x轴正半轴成45°和30°角,过点P(1,0)作直线AB分别交OA、OB于A、B两点,当AB的中点C恰好落在直线y=x上时,求直线AB的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com