精英家教网 > 高中数学 > 题目详情
(2011•扬州三模)理科附加题:
已知(1+
12
x)n
展开式的各项依次记为a1(x),a2(x),a3(x),…an(x),an+1(x).
设F(x)=a1(x)+2a2(x)+3a3(x),…+nan(x)+(n+1)an+1(x).
(Ⅰ)若a1(x),a2(x),a3(x)的系数依次成等差数列,求n的值;
(Ⅱ)求证:对任意x1,x2∈[0,2],恒有|F(x1)-F(x2)|≤2n-1(n+2).
分析:(I)利用二项展开式的通项公式求出展开式的通项,求出前三项的系数,据a1(x),a2(x),a3(x)的系数依次成等差数列,列出方程求出n的值.
(II)先利用到序相加法求出F(2)-F(0)的值,利用导数判断出F(x)的单调性,得证.
解答:解:(Ⅰ)依题意ak(x)=
C
k-1
n
(
1
2
x)k-1
,k=1,2,3,…,n+1,
a1(x),a2(x),a3(x)的系数依次为Cn0=1,
C
1
n
1
2
=
n
2
C
2
n
•(
1
2
)2=
n(n-1)
8

所以
n
2
=1+
n(n-1)
8

解得n=8;            
(Ⅱ)F(x)=a1(x)+2a2(x)+3a3(x),…+nan(x)+(n+1)an+1(x)=
C
0
n
+2
C
1
n
(
1
2
x)+3
C
2
n
(
1
2
x)2…+n
C
n-1
n
(
1
2
x)n-1+(n+1)
C
n
n
(
1
2
x)n

F(2)-F(0)=2Cn1+3Cn2…+nCnn-1+(n+1)Cnn
设Sn=Cn0+2Cn1+3Cn2…+nCnn-1+(n+1)Cnn
则Sn=(n+1)Cnn+nCnn-1…+3Cn2+2Cn1+Cn0
考虑到Cnk=Cnn-k,将以上两式相加得:2Sn=(n+2)(Cn0+Cn1+Cn2…+Cnn-1+Cnn
所以Sn=(n+2)2n-1
所以F(2)-F(0)=(n+2)2n-1-1
又当x∈[0,2]时,F'(x)≥0恒成立,
从而F(x)是[0,2]上的单调递增函数,
所以对任意x1,x2∈[0,2],|F(x1)-F(x2)|≤F(2)-F(0)═(n+2)2n-1-1<(n+2)2n-1
点评:解决二项展开式的特定项问题常利用的工具是二项展开式的通项公式;求数列的前n项和问题关键是利用数列的通项公式的形式,选择合适的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•扬州三模)已知实数p>0,直线3x-4y+2p=0与抛物线x2=2py和圆x2+(y-
p
2
)2=
p2
4
从左到右的交点依次为A、B、C、D,则
AB
CD
的值为
1
16
1
16

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•扬州三模)某次考试共有8道选择题,每道选择题有4个选项,其中只有一个是正确的;评分标准为:“每题只有一个选项是正确的,选对得5分,不选或选错得0分.”某考生每道题都给出一个答案,已确定有5道题的答案是正确的,而其余3道题中,有一道题可判断出两个选项是错误的,有一道题可以判断出一个选项是错误的,还有一道题因不了解题意而乱猜,试求该考生:
(Ⅰ)得40分的概率;
(Ⅱ)所得分数ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•扬州三模)用半径为10
2
cm,面积为100
2
π
cm2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计),则该容器盛满水时的体积是
1000π
3
cm3
1000π
3
cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•扬州三模)已知(1+i)•z=-2i,那么复数z=
-1-i
-1-i

查看答案和解析>>

同步练习册答案