精英家教网 > 高中数学 > 题目详情
20.两条直线l1:x+y-2=0与l2:7x-y+4=0相交成四个角,则这些角的平分线所在的直线的方程为x-3y+7=0或6x+2y-3=0.

分析 设角的平分线所在的直线上的点为(x,y),则$\frac{|x+y-2|}{\sqrt{2}}$=$\frac{|7x-y+4|}{\sqrt{50}}$,化简可得结论.

解答 解:设角的平分线所在的直线上的点为(x,y),则$\frac{|x+y-2|}{\sqrt{2}}$=$\frac{|7x-y+4|}{\sqrt{50}}$,
化简可得x-3y+7=0或6x+2y-3=0.
故答案为:x-3y+7=0或6x+2y-3=0.

点评 本题考查直线方程,考查点到直线的距离公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.一个盒子中有8个正品,2个次品,现逐个抽取,取到次品则抛弃,直到取到正品为止,则被抛弃的次品数X的方差为$\frac{88}{405}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,a,b,c分别是角A,B,C的对边,已知A为锐角,且sin2A-cos2A=$\frac{1}{2}$,则(  )
A.b+c<2aB.b+c≤2aC.b+c=2aD.b+c≥2a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=\sqrt{3}sinωx•cosωx+{cos^2}ωx-\frac{1}{2}({ω>0})$的图象上两相邻对称轴间的距离为$\frac{π}{4}$.
(1)求f(x)的单调递减区间;
(2)将函数f(x)的图象向右平移$\frac{π}{8}$个单位,再将所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,求g(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知正实数a,b,c满足ab+bc+ca≤1,证明:a+b+c+$\sqrt{3}$≥8abc($\frac{1}{{a}^{2}+1}$+$\frac{1}{{b}^{2}+1}$+$\frac{1}{{c}^{2}+1}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.证明:$\frac{2}{1}+\frac{3}{2}+\frac{4}{3}+…+\frac{n+1}{n}>n•\root{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.直线2x-y-4=0,绕它与x轴的交点逆时针旋转$\frac{π}{4}$所得直线方程为(  )
A.x-3y-2=0B.3x-y+6=0C.3x+y-6=0D.x+y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点A(7,8),B(10,4),C(2,-4),求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某山海拔7500m,海平面温度为25℃,若气温是高度的函数,而且高度每升高100m.温度就下降0.6℃.那么气温T随高度x变化的函数关系T=25-$\frac{x-7500}{100}×0.6$,其定义域和值域分别为(7500,+∞)、(-∞,25).

查看答案和解析>>

同步练习册答案