精英家教网 > 高中数学 > 题目详情

【题目】十二生肖是十二地支的形象化代表,即子(鼠)、丑(牛)、寅(虎)、卯(兔)、辰(龙)、巳(蛇)、午(马)、未(羊)、申(猴)、酉(鸡)、戌(狗)、亥(猪),每一个人的出生年份对应了十二种动物中的一种,即自己的属相.现有印着六种不同生肖图案(包含马、羊)的毛绒娃娃各一个,小张同学的属相为马,小李同学的属相为羊,现在这两位同学从这六个毛绒娃娃中各随机取一个(不放回),则这两位同学都拿到自己属相的毛绒娃娃的概率是(

A.B.C.D.

【答案】B

【解析】

先求得基本事件的总数和符合题意的事件数,然后根据古典概型概率计算公式,计算出所求概率.

小张、小李同学各取一个毛绒娃娃,共有种取法,这两位同学都拿到自己属相的毛绒娃娃有1种取法,故所求概率.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求的单调区间;

2)若的极小值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:函数在定义域上单调递增;命题:在区间上恒成立.

1)如果命题为真命题,求实数的值或取值范围;

2)命题“”为真命题,”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“勾股定理”在西方被称为“毕达哥拉斯定理”.三国时期,吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷100枚飞镖,则估计飞镖落在区域1的枚数最有可能是(

A.30B.40C.50D.60

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数)有两个极值点.

1)求的范围;

2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面是为菱形,在平面内的射影恰为线段的中点.

1)求证:

2)若,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点EFEF=,则下列结论中错误的是(

A.ACBEB.EF平面ABCD

C.三棱锥A-BEF的体积为定值D.异面直线AE,BF所成的角为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的左、右焦点分别为,离心率.的直线与椭圆相交于两点,且的周长为.

1)求椭圆的方程;

2)若点位于第一象限,且,求的外接圆的方程.

查看答案和解析>>

同步练习册答案