已知点P(4,4),圆C:(x-m)2+y2=5(m<3) 与椭圆E:+=1(a>b>0)有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.
(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求·的取值范围.
(1)点A代入圆C的方程,得(3-m)2+1=5,
∵m<3,∴m=1.圆C的方程为(x-1)2+y2=5.
设直线PF1的斜率为k,则PF1:y=k(x-4)+4,
即kx-y-4k+4=0.
∵直线PF1与圆C相切,∴=.
解得k=,或k=.
当k=时,直线PF1与x轴的交点横坐标为,不合题意,舍去.
当k=时,直线PF1与x轴的交点横坐标为-4,
∴c=4,F1(-4,0),F2(4,0).
2a=|AF1|+|AF2|=5+=6,a=3,
a2=18,b2=2.椭圆E的方程为:+=1.
(2)=(1,3),设Q(x,y),=(x-3,y-1),
·=(x-3)+3(y-1)=x+3y-6.
∵+=1,即x2+(3y)2=18,
而x2+(3y)2≥2|x|·|3y|,∴-18≤6xy≤18.
则(x+3y)2=x2+(3y)2+6xy=18+6xy的取值范围是[0,36].
x+3y的取值范围是[-6,6].
∴x+3y-6的取值范围是[-12,0],
即·的取值范围是[-12,0].
科目:高中数学 来源: 题型:
x2 |
a2 |
y2 |
b2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
x2 |
a2 |
y2 |
b2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
A、[0,
| ||||
B、[
| ||||
C、[0,
| ||||
D、[
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com