精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(1),解不等式

(2)若当时,关于的不等式恒成立,求的取值范围;

(3),若存在使不等式成立,求的取值范围.

【答案】1;(2;(3.

【解析】

1)利用零点分段讨论可求不等式的解.

2的解为,在该条件下恒成立即为恒成立,参变分离后可求实数的取值范围.

3有解即为有解,利用绝对值不等式可求的最小值,从而可得的取值范围.

1)当时,即为.

时,不等式可化为,故

时,不等式可化为,故.

综上,的解为.

2的解为

时,有

因为不等式恒成立,故上恒成立,

所以上恒成立,而上总成立,

所以.

故实数的取值范围为.

3

等价于

上有解.

由绝对值不等式有

所以,当且仅当时,成立,

所以,故.

故实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为2PBC的中点,点Q是棱上的动点.

1)点Q在何位置时,直线DCAP交于一点,并说明理由;

2)求三棱锥的体积;

3)棱上是否存在动点Q,使得与平面所成角的正弦值为,若存在指出点Q在棱上的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知(其中.

1)当时,计算

2)记,试比较的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系 中,曲线 的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线 的极坐标方程为 .

1)求直线和曲线的普通方程;

2)已知点,且直线和曲线交于两点,求 的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,人们的支付方式发生了巨大转变,使用移动支付购买商品已成为一部分人的消费习惯.某企业为了解该企业员工两种移动支付方式的使用情况,从全体员工中随机抽取了100人,统计了他们在某个月的消费支出情况.发现样本中两种支付方式都没有使用过的有5人;使用了两种方式支付的员工,支付金额和相应人数分布如下:

支付金额(元)

支付方式

大于2000

使用

18

29

23

使用

10

24

21

依据以上数据估算:若从该公司随机抽取1名员工,则该员工在该月两种支付方式都使用过的概率为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线(α为参数)经过伸缩变换得到曲线C2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系.

(1)C2的普通方程;

(2)设曲线C3的极坐标方程为,且曲线C3与曲线C2相交于MN两点,点P(10),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,射线的方程为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的方程为.一只小虫从点沿射线向上以单位/min的速度爬行

1)以小虫爬行时间为参数,写出射线的参数方程;

2)求小虫在曲线内部逗留的时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某社区名居民参加年国庆活动,他们的年龄在岁至岁之间,将年龄按分组,得到的频率分布直方图如图所示.

1)求的值,并求该社区参加年国庆活动的居民的平均年龄(每个分组取中间值作代表);

2)现从年龄在的人员中按分层抽样的方法抽取人,再从这人中随机抽取人进行座谈,用表示参与座谈的居民的年龄在的人数,求的分布列和数学期望;

3)若用样本的频率代替概率,用随机抽样的方法从该地岁至岁之间的市民中抽取名进行调查,其中有名市民的年龄在的概率为,当最大时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据阅兵领导小组办公室介绍,2019年国庆70周年阅兵有59个方()队和联合军乐团,总规模约15万人,是近几次阅兵中规模最大的一次.其中,徒步方队15个.为了保证阅兵式时队列保持整齐,各个方队对受阅队员的身高也有着非常严格的限制,太高或太矮都不行.徒步方队队员,男性身高普遍在175cm185cm之间;女性身高普遍在163cm175cm之间,这是常规标准.要求最为严格的三军仪仗队,其队员的身高一般都在184cm190cm之间.经过随机调查某个阅兵阵营中女子100人,得到她们身高的直方图,如图,记C为事件:某一阅兵女子身高不低于169cm,根据直方图得到P(C)的估计值为05

(1)求直方图中ab的值;

(2)估计这个阵营女子身高的平均值 (同一组中的数据用该组区间的中点值为代表)

查看答案和解析>>

同步练习册答案